Двойственная природа электрона
В классической механике рассматривается два вида движения: движение тела с локализацией перемещающегося объекта в каждой точке траектории в определенный момент времени и движение волны, делокализованной в пространстве среды. Для микрообъектов такое разграничение движения невозможно. Эту особенность движения называют корпускулярно-волновым дуализмом.
Корпускулярно-волновой дуализм - способность микрочастицы, обладающей массой, размерами и зарядом, одновременно проявлять и свойства, характерные для волн, например, способность к дифракции. В зависимости от того, какие свойства частиц изучаются, они проявляют либо одни, либо другие свойства.
Автором идеи корпускулярно-волнового дуализма стал А. Эйнштейн, который предложил рассматривать кванты электромагнитного излучения - фотоны - как движущиеся со скоростью света частицы, имеющие нулевую массу покоя. Их энергия равна
E = mc2 = hν = hc / λ,
где m - масса фотона, с - скорость света в вакууме, h - постоянная Планка, ν - частота излучения, λ - длина волны.
В 1924 г. французский физик Л. де Бройль предположил, что корпускулярно-волновыми свойствами обладает не только фотон, но и любая другая частица, движущаяся со скоростью v. Он получил уравнение, связывающее скорость движения частицы с длиной волны производимого ей электромагнитного излучения (уравнение де Бройля):
λ = h / mv,
где m - масса частицы, v - ее скорость, h - постоянная Планка; величина λ получила название длины волны де-Бройля.
Для объектов, обладающих сравнительно большой массой, волновые свойства обнаружить не удается. Так, для тела массой 1 г, летящего со скоростью 1 м/с, длина волны де-Бройля имеет порядок 1·10−30 м, что на 15 порядков меньше размера ядра атома, и не поддается измерению. В то же время для нейтрона массой около 1,7·10−27 кг, движущегося со скоростью 500 м/с, длина волны де Бройля составляет уже примерно 1·10−9 м. Этой величиной пренебрегать уже нельзя.
Гипотеза де Бройля была подтверждена экспериментально. В 1927 г. американские физики К. Дэвиссон и Л. Джермер и независимо от них англичанин Дж.-П. Томсон обнаружили дифракцию электронов на кристалле никеля.
Соотношение неопределенностей Гейзенберга
В 1927 г. немецкий физик-теоретик В. Гейзенберг сформулировал принцип неопределенности, заключающийся в принципиальной невозможности одновременно точно определить положение микрочастицы в пространстве и ее импульс:
Δpx · Δ x ≥ h / 2π,
где Δpx = m Δvxx - неопределенность (ошибка в определении) импульса микрообъекта по координате х; Δx - неопределенность (ошибка в определении) положения микрообъекта по этой координате.
Таким образом, чем точнее определена скорость, тем меньше известно о местоположении частицы, и наоборот.
Поэтому для микрочастицы становится неприемлемым понятие о траектории движения, поскольку оно связано с конкретными координатами и импульсом частицы. Можно лишь говорить о вероятности обнаружить ее какой-то областях пространства.
Произошел переход от "орбит движения" электронов, введенных Бором, к понятию орбитали - области пространства, где вероятность пребывания электронов максимальна.