Так просто и так сложно
На гигантское магнетосопротивление полезно взглянуть еще и вот с какой точки зрения. Само явление формулируется чрезвычайно просто и выглядит очень естественно: электрический ток и магнитное поле — это классическая физика XIX века. Однако реальные микроскопические причины, приводящие к такому интересному эффекту, очень непросты и многократно опираются на квантовую механику. Можно даже отметить, что в этом явлении используются все три принципиальных новшества квантовой механики по сравнению с классической физикой — волновая природа, тождественность и спин частиц.
Напрашивается также и параллель еще с одним электромагнитным явлением со схожей судьбой — эффектом Холла. Этот эффект тоже возникает при протекании тока в магнитном поле, он тоже был открыт в XIX веке, и с приходом квантовой механики в нём тоже открыт целый пласт новых эффектов. Только, в отличие от магнетосопротивления, эффект Холла привел уже к двум Нобелевским премиям по физике — за 1985-й и за 1998 год.
Впрочем, у магнетосопротивления есть реальный шанс поквитаться. На очереди стоит колоссальное магнетосопротивление — явление совсем иного уровня сложности, детальное понимание которого пока что ускользает от исследователей.
И напоследок
В объявлении Нобелевского комитета премии по физике за 2007 год очень много внимания уделяется тому, что использование эффекта гигантского магнетосопротивления привело к резкому увеличению плотности записи на жестких дисках. Связь очень простая — слойка с гигантским магнетосопротивлением явилась чрезвычайно компактным, быстрым, чувствительным и, наконец, очень простым датчиком магнитных полей. Будучи расположенной над быстро вращающейся пластиной жесткого диска, такая слойка послушно отслеживает магнитные поля пролетающих под ней битов и сразу же переводит их в электрический ток.
Однако несколько удручает то, что многочисленные СМИ, ужимая все сообщение в одну фразу, полностью выкидывают саму суть открытия, оставляя лишь его «потребительскую» сторону. Из многочисленных заголовков следует, что премия дана за нанотехнологии или даже за уменьшение размеров жестких дисков.
На самом деле, в своих статьях об открытии явления гигантского магнетосопротивления будущие Нобелевские лауреаты писали о практических приложениях лишь в самых общих словах. Они ни в коей мере не были нацелены именно на какое-либо конкретное практическое применение — они изучали новый магнитный эффект. И премия была дана именно за научную сторону дела, а не за внедрение этого эффекта в IT-технологии.
Конечно, это не значит, что авторы вообще не догадывались о возможных применениях — ведь недаром Петер Грюнберг запатентовал технологию создания магнитных датчиков с использованием эффекта гигантского магнетосопротивления. Они прекрасно понимали, что в современном высокотехнологическом мире всякий принципиально новый материал рано или поздно найдет свое практическое применение. Именно такой же интерес движет сейчас исследователями, изучающими, скажем, метаматериалы с удивительными оптическими свойствами. Мы можем быть абсолютно уверены, что они найдут себе самые разнообразные применения, хоть сейчас и трудно предугадать, какие именно.
За открытием гигантского магнетосопротивления последовало открытие других схожих эффектов и бурное развитие всей области. Оптимизировав схему слойки, исследователи придумали «спиновый вентиль» (см. подробности в статье Эпоха гигантских эффектов) — именно он и используется сейчас в головках жестких дисков (см. объяснение и анимацию на сайте IBM).
При замене немагнитного металла изолятором появился эффект туннельного магнетосопротивления, на основе которого сейчас создают энергонезависимую магнеторезистивную память (MRAM, Magnetoresistive Random Access Memory).
Наконец, физики обратили свое внимание и на «естественно-слоистые» материалы. Именно в таком материале — манганите лантана — был в 1994 году открыт новый, гораздо более сильный эффект — колоссальное магнетосопротивление, причина которого пока не выяснена до конца, но сенсоры на основе которого уже тоже запатентованы.
Оригинальные статьи об открытии эффекта гигантского магнетосопротивления:
1) A. Fert et al. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices // Phys. Rev. Lett. (1988). V. 61. P. 2472–2475.
2) G. Binasch, P. Grьnberg, F. Saurenbach, W. Zinn. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange // Phys. Rev. B (1989). V. 39. P. 4828–4830.
Обе статьи лежат в открытом доступе.
См. также: С. А. Никитин. Гигантское магнетосопротивление // Соросовский образовательный журнал. 2004. № 2, с. 92–98.