Серж Арош. Фото (c)AFP
С помощью таких резонаторов одни физики изготавливали мазеры - микроволновые лазеры, то есть источники когерентного излучения в микроволновом диапазоне, другие интересовались взаимодействием фотонов и атомов материи. Француз Серж Арош, работавший тогда в Париже, относился ко второй категории. Он, впрочем, заинтересовался вот чем: можно ли с помощью атомов узнать, что, с точки зрения квантовой механики, происходит внутри резонатора? Если быть точным, то можно ли узнать, есть ли внутри резонатора хоть один фотон.
При этом, конечно, Арош хотел получить ответ на свой вопрос, не уничтожая фотон в резонаторе - то есть не вызывая коллапса его волновой функции. Но разве такое возможно? Не противоречит ли это фундаментальным основам квантовой механики? Оказалось, что нет, не противоречит. Эксперимент Ароша выглядел следующим образом. Он брал резонатор, состоящий из двух зеркал, охлажденных почти до абсолютного нуля и расположенных на расстоянии около трех сантиметров друг от друга. Внутри резонатора создавалось поле, то есть по сути от стенки к стенке летали фотоны.
Сквозь этот резонатор пропускали ридберговские атомы - атомы, один из электронов которых находится на очень высоком энергетическом уровне. С классической точки зрения, это означает, что данный электрон движется вокруг ядра по орбите с очень большим радиусом и напоминает тонкий пончик (электрон почти равномерно "размазан" по почти круговой орбите). "Остаток" атома можно рассматривать как отдельный катион, то есть положительно заряженный ион. В результате структура получившегося атома напоминает классическую схему атома водорода. Радиус таких атомов на несколько порядков больше обычных (в 2008 году атом калия удалось раздуть до 1 миллиметра!) - в работе Ароша использовались атомы рубидия диаметром 125 нанометров.
Дэвид Уайнленд. Фото (c)AP
Скорость ридберговских атомов была подобрана таким образом, что они не поглощали фотон. Но особым образом подобранные исходные состояния атомов менялись специфическим образом, проходя через резонатор. Если быть точным, то состояние атома можно представлять в виде волны, - так вот, если в резонаторе был фотон, то пики этой волны смещались. А это, в свою очередь, можно было зарегистрировать уже обычными измерениями. Развивая идеи и используя более одного атома, Арош создал технологию подсчета количества фотонов в резонаторе.
Американец Дэвид Уайленд, в отличие от Ароша, интересовался ионами. Объектом его исследований были ионы, помещенные в ловушку. Ловушка представляет собой вакуумную камеру, в которой присутствует статическое и колебательное электрическое поле. Эти поля позволяют удерживать и изучать одиночные ионы - за разработку такой ловушки, получившей название ловушки Пауля, Вольфганг Пауль и Ханс Демельт в 1989 году получили Нобелевскую премию по физике.
Главным достижением Уайнленда стало умелое использование лазерных импульсов. Например, оказалось, что, подбирая особым образом такие импульсы, можно "затолкать" ион в самое нижнее энергетическое состояние. А после, с помощью уже других импульсов, перевести ион в суперпозицию нижнего и следующего за ним энергетического состояния. Суперпозицией в квантовой механике называется ситуация (мы по-прежнему говорим про копенгагенскую интерпретацию), когда волновая функция может схлопываться лишь к конечному числу классических состояний - в данном случае, двум. Получив ион в настоящем квантовом состоянии, физики наконец смогли изучать эти, казалось бы, загадочные объекты.