Найти функцию f(x)
\(\displaystyle f(x)+f\left(\frac{1}{1-x}\right)=x\) (1)
\( f(\frac{1}{1-x})+f(\frac{1}{1-\frac{1}{1-x}})=\frac{1}{1-x} \)
\( \frac{1}{1-\frac{1}{1-x}}=\frac{x-1}{x} \)
\( f(\frac{1}{1-x})+f(\frac{x-1}{x})=\frac{1}{1-x} (2) \)
\( f(\frac{x-1}{x})+f(\frac{1}{1-\frac{x-1}{x}})=\frac{x-1}{x} \)
\( \frac{1}{1-\frac{x-1}{x}}=x \)
\( f(\frac{x-1}{x})+f(x)=\frac{x-1}{x} \) (3)
Складываем (1), (2), (3)
\( f(x)+f(\frac{1}{1-x})+f(\frac{1}{1-x})+f(\frac{x-1}{x})+f(\frac{x-1}{x})+f(x)=x+\frac{1}{1-x}+\frac{x-1}{x} \)
\( 2f(x)+2(f(\frac{1}{1-x})+f(\frac{x-1}{x}))=x+\frac{1}{1-x}+\frac{x-1}{x} \)
\( 2f(x)+2\frac{1}{1-x}=x+\frac{1}{1-x}+\frac{x-1}{x} \)
\( f(x)=\frac{1}{2}(x+\frac{1}{1-x}+\frac{x-1}{x})-\frac{1}{1-x} \)
\( f(x)=\frac{x^3-x+1}{2x^2-2x} \)