По состоянию на текущий момент на новостной ленте сайта Роскосмоса http://www.roscosmos.ru/main.php?id=2 нет никаких упоминаний о смерти Н.Армстронга.
Двигатель F-1: реальность и вымысел
Многие исследователи как раз указывают в первую очередь не на проблемы с доводкой «водородников» на верхних ступенях, а именно на невозможность на том техническом уровне и на тех схемных решениях реализовать однокамерный ракетный двигатель на керосине и кислороде тягой свыше 700 тонн. Тут есть масса причин, и главная из них – т.н. высокочастотные неустойчивости горения, вызванные тем, что (грубо) в огромной камере возникают сгустки несгоревшей топливной смеси (наподобие «гремучего газа»), которые выгорают не равномерно, а как бы микровзрывами. Пока камера двигателя мала – это терпимо. Но при огромных линейных размерах в двигателе возникает детонация, которая входит в резонанс, что разрушает корпус двигателя. Долгие годы создать одиночный ЖРД тягой свыше ста тонн считалось весьма проблематичным.
Советские конструкторы в лице В.П. Глушко и других пришли к однозначному выводу: делать крупные ЖРД возможно лишь по замкнутой схеме, когда один (или оба) компонента поступают в камеру не в жидком виде (схема жидкость-жидкость), а как горячий газ (схема жидкость-газ), что резко снижает время воспламенения порций топлива, и существенно локализует проблемы частотных неустойчивостей горения до разумных пределов. Тем не менее, американцы настаивают на том, что им удалось сделать то, чего не может быть в природе, т.е. однокамерный ракетный двигатель на керосине и кислороде по открытой схеме с жидкофазной подачей обоих компонентов и тягой свыше 700 тонн.
Доступные фотографии стендовых испытаний этого чуда-двигателя также рождают массу вопросов, ибо из сопла там валит густой непрозрачный дым, за пеленой которого лишь через несколько метров пробивается пламя! Даже сами сотрудники испытательного полигона, видавшие много всякого, были немало удивлены работе этой «коксовой батареи». Фото. Двигатель F-1 на стенде Увидав это «черное пламя», первой реакцией испытателей было выключить все немедленно, пока не рвануло. Но коллеги с немецким акцентом пояснили, что все нормально, что это «так надо»…
Тут необходимо сделать одно отступление. В отличие от большинства советских ракетных двигателей, которые изготовлялись из двух скрепленных цельнолитых оболочек (наружной и внутренней), между которыми по ребристым каналам протекало жидкостное охлаждение одним из компонентов (обычно горючее, реже окислитель), большинство американских ЖРД тех лет представляли из себя набор огромного количества тонких трубок, которые путем пайки и силовых бандажей скреплялись между собой, образуя привычную форму камеры и сопла ЖРД. Трубки обычно шли вдоль оси двигателя, и если использовать двойной набор трубок, то по одним керосин тек скажем сверху вниз – от головки до края сопла, а по другим (параллельным) наоборот – снизу вверх, подавая нагретое горючее к форсуночной головке.
Не буду сейчас обсуждать достоинства и недостатки каждой схемы, скажу только, что наши «листовые» оболочки делали из хитрого бронзового сплава, а американские трубки – из никеля или стали. Разница в том, что советская хромистая бронза (придуманная не без подсказки трофейных немцев) обладала лучшими теплопроводными свойствами, чем сталь и никель. Так вот, исследователь лунного подлога С. Покровский в статье «Почему полеты на луну не состоялись» указывает на конструкционные недостатки сплава, из которого были сделаны эти самые трубки двигателя F-1 – это никелевый сплав Инконель Х-750. Не вдаваясь в подробное описание доводов Покровского, укажу, что, по его мнению, на то время жаропрочные никелевые сплавы были еще плохо изучены, и как оказалось, этот самый экспериментальный сплав Инконель Х-750 в действительности не мог обеспечить необходимых прочностных свойств при заявленных рабочих параметрах двигателя.
По мнению Покровского, американцы тихо отказались от редкого никелевого сплава, перейдя на более надежную жаропрочную сталь. Кроме того, по гипотезе Покровского, для обеспечения безопасной работы двигателя на тонких стальных трубках, американцы были вынуждены пойти на существенное снижение температуры в камере сгорания (на 15%), и как следствии – на потерю около 22% тяги двигателя. Должен признаться, что я не вполне согласен с обоснованием численных оценок данной версии, в частности, с оценкой вклада лучистого теплообмена паров воды в камере двигателя F-1, однако хотел бы заметить, что здравое зерно в этих гипотезах, несомненно, присутствует. Только я бы это обосновал гораздо проще и немного с другого конца.