Интервью министра сельского хозяйства СССР в правительствах И.В. Сталина и Н.С. Хрущева Бенедиктова журналу "Молодая гвардия": "В зерновом клине страны речь и по сей день [речь идет о конце 80-х гг.] преобладают сельскохозяйственные культуры, выведенные его сторонниками и учениками… Учеником Лысенко был и Павел Пантелеймонович Лукьяненко, пожалуй, наш самый талантливый и плодовитый селекционер, в активе которого 15 районированных сортов озимой пшеницы, в том числе получившие мировую известность "Безостая-1", "Аврора", "Кавказ"…".
и т.д. и т.п.
2) [7]
Но это только часть правды. Оказалось, что у одноклеточных организмов широко распространен так называемый горизонтальный обмен генетическим материалом. Бактерии выделяют в окружающую среду фрагменты своей ДНК, могут поглощать такие фрагменты, выделенные другими бактериями (в том числе и относящимися к совершенно другим видам!), и "встраивать" эти кусочки чужого генома в свой собственный [10].
Один из способов горизонтального обмена генами, от которого не защищены даже многоклеточные, - это вирусный перенос. Известно, что ДНК вируса (или особая ДНК, которая синтезируется на базе РНК вируса) может встраиваться в геном клетки-хозяина, а потом снова отделяться от него и формировать новые вирусные частицы, которые могут заражать другие клетки. При этом вместе с собственной ДНК вирус может случайно "захватить" кусочек ДНК хозяина и таким образом перенести его в другую клетку, в том числе - и в клетку другого организма. Иногда, когда заражение происходит уже после оплодотворения, во время внутриутробного развития, вирусная инфекция передается потомству и часто возникает ситуация, когда зародыш несет вирусную ДНК не только в соматических, но и в половых клетках, и таким образом белок, кодируемый кусочком ДНК хозяина, передается по наследству [11].
Недавно обнаружен и вне(эпи)генетический способ наследования приобретенных изменений. Оказалось, что в процессе жизнедеятельности к молекулам ДНК в клетках (в том числе и в половых) специальные ферменты "пришивают" метильные группы (-CH3). Причем к одним генам метильных групп "пришивается" больше, к другим - меньше. Метилирование ДНК - это модификация молекулы ДНК без изменения самой нуклеотидной последовательности ДНК. Метилирование ДНК заключается в присоединении метильной группы к цитозину в составе CpG-динуклеотида в позиции N5 пиримидинового кольца. Метилирование резко нарушает функцию белков синтезирующих информационную РНК, и это один из источников ошибок при синтезе белка.
Обычно метилирование выключает данный ген из системы и белок на нем не может синтезироваться. Метилирование ДНК видимо, сохраняется при делении. На этом основано существование разных клеток и тканей в организме животных. Этот механизм можно рассматривать как часть эпигенетической (когда информация записана не на ДНК) составляющей генома.
Распределение метильных групп по генам (так называемый рисунок метилирования) зависит от того, насколько активно тот или иной ген используется. Получается совсем как с упражнением и неупражнением органов, которое Ламарк считал причиной наследственных изменений. Поскольку "рисунок метилирования" передается по наследству и поскольку он, в свою очередь, влияет на активность генов у потомства, легко заметить, что здесь может работать совершенно ламарковский механизм наследования: "натренированные" предками гены будут и у потомства работать активнее, чем "ослабевшие" от долгого неиспользования [12].
Другой вариант "эпигенетического" наследования приобретенных признаков основан на взаимной активации и инактивации генов. Допустим, ген А производит белок, одна из функций которого
состоит в блокировании работы гена Б, а ген Б, в свою очередь, кодирует другой белок, способный "выключать" ген А. Такая система может находиться в одном из двух состояний: либо ген А работает, и тогда ген Б выключен, либо наоборот. Допустим, что переход системы из одного состояния в другое может происходить только в результате какого-то особенного внешнего воздействия. То состояние, в котором находится эта двухгенная система в клетках матери, будет через яйцеклетку передаваться ее потомству (поскольку сперматозоид содержит пренебрежимо малое количество белков). Если же в течение жизни матери система переключится в другое состояние, то этот признак передастся потомству, родившемуся после "переключения". Опять получается "наследование по Ламарку" [13].
С. Миронин
Источники: 7-14. Марков А. 2005. От Ламарка к Дарвину... и обратно к Ламарку? Компьютерра.
http://www.computerra.ru/xterra/38100/