Можно ли создать антигравитацию?Одним из самых удивительных фактов в науке является то, насколько универсальны законы природы. Каждая частица подчиняется одним и тем же правилам, испытывает одни и те же силы, существует в одних и тех же фундаментальных константах, независимо от того, где и когда находится. С точки зрения гравитации каждая отдельная частичка Вселенной испытывает одно и то же гравитационное ускорение или же одну и ту же кривизну пространства-времени, независимо от того, какими свойствами обладает.

Можно ли создать антигравитацию? Антигравитация может дать нам очень многое. Фото.
Антигравитация может дать нам очень многое.
Во всяком случае, так следует из теории. На практике же некоторые вещи измерить бывает очень трудно. Фотоны и обычные стабильные частицы одинаково падают, как и ожидается, в гравитационном поле, и Земля заставляет любую массивную частицу ускоряться по направлению к ее центру со скоростью 9,8 м/с2. Но как бы мы ни пытались, нам ни разу не удалось измерить гравитационное ускорение антиматерии. Она обязана ускоряться так же, но пока мы не измерим, мы не можем быть уверены. Один из экспериментов направлен на то, чтобы найти ответ на этот вопрос, раз и навсегда. В зависимости от того, что он найдет, мы можем оказаться на шаг ближе к научно-технической революции.
Существует ли антигравитация?
Возможно, вы этого не осознаете, но есть два совершенно разного способа представить массу. С одной стороны, существует масса, которая ускоряется, когда вы применяете к ней силу: это m в знаменитом уравнении Ньютона, где F = ma. То же самое и в уравнении Эйнштейна E = mc2, из которого вы можете рассчитать, сколько энергии вам нужно для создания частицы (или античастицы) и сколько энергии вы получите, когда она аннигилирует.
Вам будет интересно: Скоро на орбите появится космический отель с искусственной гравитацией
Но есть и другая масса: гравитационная. Это масса, m, которая появляется в уравнении веса на поверхности Земли (W = mg) или в гравитационном законе Ньютона, F = GmM/r2. В случае с обычной материей нам известно, что эти две массы — инерциальная и гравитационная массы — должны быть равны с точностью до 1 части на 100 миллиардов, благодаря экспериментальным ограничениям, установленным более 100 лет назад Лораном Этвешем.
Но в случае с антиматерией мы никогда не могли все это измерить. Мы применяли негравитационные силы к антиматерии и видели, как она ускоряется; мы создавали и уничтожали антиматерию; мы точно знаем, как ведет себя ее инерционная масса — точно так же, как инерционная масса обычного вещества. F = ma и E = mc2 работает в случае с антиматерией так же, как и с обычной материей.
Но если мы хотим узнать гравитационное поведение антиматерии, мы не можем просто взять за основу теорию; нам придется измерить ее. К счастью, в настоящее время проводится эксперимент, задача которого выяснить именно это: эксперимент ALPHA в ЦЕРН.
Одним из больших прорывов, случившихся за последнее время, стало создание не только частиц из антиматерии, но и нейтральных, устойчивых связанных состояний в них. Антипротоны и позитроны (антиэлектроны) могут быть созданы, замедлены и принуждены взаимодействовать друг с другом с образованием нейтрального антиводорода. Используя комбинацию электрических и магнитных полей, мы можем ограничить эти антиатомы и поддерживать их в стабильном состоянии вдали от материи, которая приведет к аннигиляции в случае столкновения.
Вам будет интересно: Искусственная гравитация перестаёт быть фантастикой
продолжение
http://bolshoyforum.com/forum/index.php?topic=455628.msg10462856#msg10462856