\(\displaystyle J= \int\limits_{0}^{1}\frac{\ln(1+x)}{1+x^2}dx, \qquad J(a)= \int\limits_{0}^{1}\frac{\ln(1+ax)}{1+x^2}dx, \qquad J(1)=J, \qquad J(0)=0, \)
\(\displaystyle \frac{dJ(a)}{da}=\int\limits_{0}^{1} \frac{\partial}{\partial a}\frac{\ln(1+ax)}{1+x^2}dx =\int\limits_{0}^{1} \frac{x\;dx}{(1+ax)(1+x^2)}, \qquad \frac{x}{(1+ax)(1+x^2)}=-\frac{a}{(1+a^2)(1+ax)}+\frac{x}{(1+a^2)(1+x^2)}+\frac{a}{(1+a^2)(1+x^2)},\)
\(\displaystyle \frac{dJ(a)}{da} =-\frac{a}{1+a^2}\int\limits_{0}^{1} \frac{dx}{1+ax} + \frac{1}{1+a^2}\int\limits_{0}^{1} \frac{x\;dx}{1+x^2} +\frac{a}{1+a^2}\int\limits_{0}^{1} \frac{dx}{1+x^2} =-\frac{\ln(1+ax)}{1+a^2}\Biggr|_0^1 + \frac{\ln(1+x^2)}{2(1+a^2)}\Biggr|_0^1 +\frac{a}{1+a^2}\mathrm{arctg}\; x\Biggr|_0^1 =-\frac{\ln(1+a)}{1+a^2} + \frac{\ln 2}{2(1+a^2)} +\frac{\pi}{4}\frac{a}{1+a^2},\)
\(\displaystyle J(a) =-\int\limits_{0}^{a}\frac{\ln(1+x)}{1+x^2}dx+ \int \frac{\ln 2\;da}{2(1+a^2)} +\frac{\pi}{4}\int\frac{a\;da}{1+a^2} =-\int\limits_{0}^{a}\frac{\ln(1+x)}{1+x^2}dx +\frac{\ln 2}{2}\mathrm{arctg}\;a+\frac{\pi}{8}\ln(1+a^2)+C,\)
\(\displaystyle a=0\!: \,\,\,\, 0=-0+0+0+C, \qquad C=0,\)
\(\displaystyle a=1\!: \,\,\,\, J=-J+\frac{\pi}{8}\ln 2+\frac{\pi}{8}\ln 2, \qquad J=\frac{\pi}{8}\ln 2.\)
Ответ: \(\displaystyle\frac{\pi}{8}\ln 2.\)