Как только попаданец обзаводится ручными акулами, он сразу начинает подумывать о изготовлении лазера. Давайте посмотрим, получится ли это у него.
Лазер это генератор света на основе индуцированного излучения. Эффект индуцированного излучения был предсказан еще Эйнштейном в 1917 году, за четыре десятка лет до создания лазеров, и заключается он в следующем — если рядом с возбужденным атомом проходит фотон с энергией равной энергии необходимой для возбуждения, то атом излучает абсолютно такой же фотон. Благодаря тому что излучение индуцированно, энергия может выделяться очень быстро и лазер может иметь огромную мгновенную мощность, благодаря когерентности излучения его легко фокусировать. Все эти свойства крайне интересны технологам и нас окружает огромное количество лазеров — от лазерных указок и прицелов, до оптоволоконных передатчиков и лазерных дисководов, от любительских лазерных граверов, до промышленных лазерных станков. Боевые лазеры, квантовая связь, телескопы на адаптивной оптике, лазеры инициирующие термоядерную реакцию, несть им числа.
Это чудовищно наукоемкая отрасль промышленности, так что смешно даже думать что знания среднего попаданца смогут принести заметную пользу. Но может быть у него получится сделать хотя бы простейший лазер? От предсказания Эйнштейна до создания лазера прошло почти сорок лет. Объясняется ли этот перерыв какими-то туманными достижениями технологии на которые любят кивать в любой дискуссии о попаданцах или его можно объяснить открытием относительно простых принципов?
В общем случае лазер состоит из трех частей: активная среда — вещество которое в возбужденном состоянии будет излучать фотоны, система накачки — устройство которое передает энергию среде, переводя ее в возбужденное состояние, и оптический резонатор — пара зеркал, которые заставляют луч многократно проходить через активную среду.
Прежде всего неплохо бы избавится от резонатора. Качество поверхности зеркал резонатора, полупрозрачность одного из них, установка зеркал в параллельном положении — мы определенно не хотим со всем этим связываться. К счастью, резонатор необязателен, по крайней мере для некоторых активных сред. Если индуцированное излучение в среде растет достаточно быстро — например удваивается каждый сантиметр, то для лазера достаточно столбика среды в десяток сантиметров и мы можем обойтись без резонатора.
И какая же из подходящих сред самая доступная? Нам ведь не хочется выращивать синтетические рубины или синтезировать легированный хромом стронций-литий-алюминиевый фторид…
Оказывается, Господь Бог в своей бесконечной мудрости наделил подходящими свойствами основной компонент нашей атмосферы — азот, он более чем доступен и индуцированное излучение в нем удваивает мощность каждую пару сантиметров. Шах и мат, атеисты! С другой стороны Люцифер означает «светоносный»…
Атомный реактор возбуждают фотки замедляющих стержней, но что же возбуждает азот? Вполне достаточно обычного высоковольтного разряда. Есть только одна маленькая проблема. При атмосферном давлении атомы ударяются так часто, что возбужденное состояние атома азота сбрасывается за наносекунды. Так что нам всего навсего надо сделать устройство успевающее выдавать разряды за миллиардные доли секунды…
Идеальный конденсатор способен выдать сколь угодно короткий импульс, но реальный конденсатор обладает индуктивностью. При протекании по проводнику тока образуется магнитное поле, сила которого пропорциональна силе тока, на образование магнитного поля надо затратить энергию — она отбирается от самого тока. Так что чем меньше индуктивность, тем быстрее идет разряд. Представим себе два параллельных проводника, по которым ток течет в противоположных направлениях. Проводники создают противоположное магнитное поле. Если бы они были бесконечно близки, то их поля полностью нейтрализовали друг друг. На деле они находятся на некотором расстоянии, так что нейтрализация не идеальна — тем они ближе тем она лучше. На образование небольшого магнитного поля надо затратить меньше энергии — значит индуктивность системы меньше. Конденсатор при разрядке можно представить как множество таких проволочек, сливающихся в пластины. Чем ближе пластины — тем меньше индуктивность. Для нашего наносекундного разряда достаточно зазора порядка десятой миллиметра. Если сделать воздушный зазор, то он будет пробит уже при напряжении в сотни вольт, на порядок меньше чем нам надо, так что нужна более надежная изоляция. Попаданец может использовать слюду или вощеную папиросную бумагу, ну а мы можем использовать разрезанный офисный файлик.