Под динамическим диапазоном (ДД) преобразователя понимается отношение максимального и минимального входных сигналов, преобразуемых с погрешностью не большей заданной, а частотный диапазон (ЧД) – область частот, в пределах которой масштаб преобразования сохраняется с заданной погрешностью.
Найдем зависимость предельных значений ДД и ЧД измерительных преобразователей информации (усилителей, дискретизаторов, квантователей, преобразователей частоты и др.) от определяющих факторов.
Известно соотношение [1,с.170], справедливое для преобразователей сигналов, независимо от принципа их построения и технической реализации
γ2ptη = wш (1).
Выражение (1) устанавливает связь определяющих параметров (относительной приведенной погрешности преобразования
γ, мощности входного сигнала
p, времени установления показаний
t, энергетического КПД
η) с минимально возможной энергией шума входного сигнала
wш.
Энергетический КПД преобразователя определен в виде отношение полезно использованной энергии
wп ко всей поступившей от источника информации
ptη= wп/pt.
Энергия шума, как известно, не может быть меньше
wш = π e k T0 = 3. 5× 10-20 Дж,
где,
k – постоянная Больцмана,
T0 – абсолютная температура, принятая для лабораторных условий
T0 = 293° К. Полный или инструментальный ДД [1,с.106] определим, как
D = 1/γ , (2)
причем
γ может определяться отклонением амплитудной характеристики преобразования от линейной, избыточными шумами и помехами, квантованием и дискретизацией (оцифровкой) измеряемой физической величины, а так же одновременно всеми перечисленными факторами.
Частотные свойства большинства преобразователей достаточно точно моделируются инерционным звеном первого порядка, с постоянной времени
τt = τ lnγ = lnγ/2πf, (3)
где,
τ = 1/2πf;
f – максимальная частота пропускания преобразователя, определенная при ослаблении выходного сигнала до уровня 1/√2 от максимального.
Используя (1) … (3), получим
D2/lnD = η p/2π f wш . (4)
Предельный ДД будет реализован при максимальном достигнутым измерительной техникой энергетическом КПД
η,. Например, для компараторов аналоговых сигналов, являющихся основным и наиболее совершенным узлом преобразователей аналоговой информацию в цифровую, используя (1) получим
η = wш/γ2 ptвкл, (5)
где,
γ - относительная погрешность компаратора, равная 0,5;
p = UперIвх – мощность, поступающая на вход компаратора от источника сигнала;
Uпер,Iвх– соответственно, напряжение перевозбуждения и средний входной ток компаратора;
tвкл– время включения компаратора.
Оказалось, что у лучших компараторов КПД всего
η = 0,19%. Такой же КПД имеет и цифровой вольтметр DY–2401 фирмы «Паккард» США [1,c.202].
С учетом полученного
η, запишем
D2/lnD = 8,6×109 p/f . (6)
По выражению (6) построено семейство зависимостей (Рис.1) предельного инструментального
D и рабочего
Dр ДД любого измерительного преобразователя, как функции от максимальной частоты пропускания
f [МГц] при разных уровнях входной мощности
p [вт]. На рисунке рабочий динамический диапазон
Dр показан для случая, когда допустимая среднеквадратичная погрешность преобразования синусоидального сигнала не превышает 1%.

Рис.1. Зависимость предельного ДД и ЧД
Графики Рис.1 говорят о том, что самым существенным фактором расширения динамического диапазона преобразователя в лабораторных условиях является повышение мощности входного сигнала. Но, когда этот ресурс исчерпан, то следует:
-во-первых, применять параллельно по входу
N измерительных каналов, что даёт расширение общего ДД в
N раз;
-во-вторых, из дополнительных преобразователей формировать нелинейные шкалы, например, так, как это предлагается в [2].
Рис.1 показывает так же, что расширение предельного ДД возможно только за счёт сужения предельного ЧД, и наоборот.
1.Новицкий П.В. Зограф И.А. Оценка погрешностей результатов измерений. 2-е изд., перераб. и доп. Л. 1991. 303 с.
2.Дорошев В.П. Ямный В.Е. Предельный динамический диапазон функциональных АЦП, Автометрия N2, Новосибирск, 1984.