Теперь ещё одна фиговина касательно 1-го числа Сахарова.
Но сначала тексты программ.
CepequHa
Gen = 30;
A = 7; b = 13; s = 6301; n = 666787; d = 6000;
cax = Abs[N[d*s^(A/b) - n, Gen]];
B = 1.190250045622932`30;
z = 3 - B;
a = ju8 - (z*ju8 + N[E, Gen])*cax;
x1 = 0.671657954;
x2 = 0.671657955;
y2 = 7.2829221;
y1 = 7.282921;
Volov = Compile[{{J, _Real}}, ({
J, #} &) /@ Union[Drop[NestList[J/(#^B*N[Exp[-#] + a, Gen]) &, 1.,
100000], 99995]]];
mm = Flatten[Table[Volov[J], {J, x1, x2, 1.0*10^(-11)}], 1];
ListPlot[mm, PlotStyle -> {
AbsolutePointSize[0.01], Hue[.7]}, Frame ->
True, FrameStyle ->
GrayLevel[.5], Axes -> False, ImageSize -> {500, 500},
PlotRange -> {y1, y2}];
Pacm9lzcka_3akaBblka
y := N[Re[(x^(1/x))^(a^x)], 170];
a = 0.00799999999999999999999999999999999999999999999999999999999999999999999`\
170;;
x = -1/3;
h = -0.00000000000000000000000000000000000000000000000000000000000000000000001\
`170;
k = y;
x1 = x + h; x2 = x - h;
x = x1;
le = y; lef = k - le;
x = x2;
re = y; rig = re - k;
c = lef - rig;
Print[c];
Yulia
a = 1.190250045608`270;(* Здесь чуть увеличиваю *)
kvo = 1497;(* Koличество итераций *)
k = kvo - 12;(* Tilda *)
o = 1;(* Стартовое значение х *)
J = 1.0000000000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000063058`270;
(* Здесь чуть уменьшаю, до появления минуса в ответе. Print[J - 1];*)
x = o;
yo = 1;
For[i = 1, i < kvo + 1,
y = N[J/((x^(1/x))^(a^x)), 270];
(*If[i > k && OddQ[i], Print[i". ", y - yo, " y= ", y]];*)
If[i > k && OddQ[i], Print[i". ", y - yo]];
If[i == 1491, t1 = y - yo];
If[i == 1493, t2 = y - yo];
If[OddQ[i], yo = y];
x = y;
i++];
Print[t2 - t1];
Left+Right_3-B
Gen = 30;
B = 1.190250045622932`30;
ju8 = 1/125;
A = 7; b = 13; s = 6301; n = 666787; d = 6000;
cax = Abs[N[d*s^(A/b) - n, Gen]];
z = 3 - B;
a = ju8 - (z*ju8 + N[E, Gen])*cax;
x1 = 1.32`30*10^(-9);
x2 = 1.4*10^(-9);
y2 = 6.3;
y1 = 6.27;
Print["6.279922816735224229306676645049656992465569244693537388"];
BJIaquMup1 = Compile[{{J, _Real}}, ({J, #} &) /@
Union[Drop[NestList[J/(#^B*N[Exp[-#] + a]) &, 1., 1000], 800]]];
mm = Flatten[Table[BJIaquMup1[J], {J, x1, x2, 1.0*10^(-14)}], 1];
ListPlot[mm, PlotStyle -> {AbsolutePointSize[.01], Hue[.9]}, Frame -> True, \
FrameStyle -> GrayLevel[0.5], Axes -> False, ImageSize -> {500, 500}, \
PlotRange -> {y1, y2}];
x1 = 140.0;
x2 = 160.0;
BJIaquMup2 = Compile[{{
J, _Real}}, ({J, #} &) /@ Union[Drop[NestList[J/(#^
B*N[Exp[-#] + a]) &, 1., 800], 600]]];
mm = Flatten[Table[BJIaquMup2[J], {J, x1, x2, 1.0*10^(-2)}], 1];
ListPlot[mm,
PlotStyle -> {AbsolutePointSize[.01], Hue[.6]}, Frame -> True,
FrameStyle -> GrayLevel[0.5], Axes -> False,
ImageSize -> {500, 500}, PlotRange -> {y1, y2}];