Автор Тема: Из чего состоят волны!  (Прочитано 5725 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн Король Альтов

  • Президент ЛАН
  • Модератор
  • Местный мудрец
  • *****
  • Сообщений: 21325
  • Страна: ru
  • Рейтинг: +1027/-1607
  • Пол: Мужской
  • Рыцарь истины, свободы и справедливости.
Из чего состоят волны!
« : 16 Ноябрь 2018, 01:06:22 »
Все волны состоят из множества материальных частиц, поскольку монопольное, целое и неделимое строение возможно только в случае элементарных частиц, движение которых описывается уравнениями квантовой механики.
Итак все виды волн во вселенной это материальные волны или даже волны вещества.
Только следует различать II). макроволны, состоящие из большого количества частиц вещества и
I). микроволны или элементарные волны, образованные одной элементарной частицей и описываемые УРАВНЕНИЯМИ КВАНТОВОЙ МЕХАНИКИ.
Все волны состоят из материальных частиц, Которые образуют сплошную материальную среду, (1) в которой или (2) через которую распространяются волны. В случае (1) волны представляют собой колебания сплошной материальной среды, которая является для них средой распространения или "эфиром".
В случае (2) фактически есть две среды - одна сама волна, а другая есть физическое пространство, сквозь которое распространяется волна с некоторым сопротивлением.
« Последнее редактирование: 17 Ноябрь 2018, 00:29:41 от Король Альтов »
Между Ньютоном и мной Альберт Эйнштейн третий лишний.
Вселенная вечна, бесконечна и бесконечномерна.

Большой Форум

Из чего состоят волны!
« : 16 Ноябрь 2018, 01:06:22 »
Загрузка...

Оффлайн Король Альтов

  • Президент ЛАН
  • Модератор
  • Местный мудрец
  • *****
  • Сообщений: 21325
  • Страна: ru
  • Рейтинг: +1027/-1607
  • Пол: Мужской
  • Рыцарь истины, свободы и справедливости.
Re: Из чего состоят волны!
« Ответ #1 : 16 Ноябрь 2018, 01:15:12 »
I). Основные уравнения квантовой механики.
1). Уравнение Шрёдингера
Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве (в общем случае, в конфигурационном пространстве) и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.
Играет в квантовой механике такую же важную роль, как уравнения Гамильтона или уравнение второго закона Ньютона в классической механике или уравнения Максвелла для электромагнитных волн.

В квантовой физике вводится комплекснозначная функция Ψ, описывающая чистое состояние объекта, которая называется волновой функцией. В наиболее распространённой копенгагенской интерпретации эта функция связана с вероятностью обнаружения объекта в одном из чистых состояний (квадрат модуля волновой функции представляет собой плотность вероятности). Поведение гамильтоновой системы в чистом состоянии полностью описывается с помощью волновой функции.

\[  {\displaystyle -{{\hbar }^{2} \over 2m}{\Delta }\Psi ({\vec {r}},t)+V({\vec {r}},t)\Psi ({\vec {r}},t)=i\hbar {\partial \over \partial t}\Psi ({\vec {r}},t),\qquad (1)} \]
\( {\displaystyle \Delta \Psi } \) в декартовой системе координат заменяется выражением
 \[ {\displaystyle \Delta \Psi ={{\partial }^{2}\Psi \over \partial {x}^{2}}+{{\partial }^{2}\Psi \over \partial {y}^{2}}+{{\partial }^{2}\Psi \over \partial {z}^{2}},} \]
тогда уравнение Шрёдингера примет вид:
\[  {\displaystyle -{{\hbar }^{2} \over 2m}\left({{\partial }^{2}\Psi \over \partial {x}^{2}}+{{\partial }^{2}\Psi \over \partial {y}^{2}}+{{\partial }^{2}\Psi \over \partial {z}^{2}}\right)+V(x,y,z,t)\Psi =i\hbar {\partial \Psi \over \partial t},} \]
где  \( {\displaystyle \hbar ={h \over 2\pi }} \)  , h  — постоянная Планка; m — масса частицы,  \( {\displaystyle V(x,y,z,t)} \) — потенциальная энергия в точке ( x , y , z )  в момент времени t.

2). Уравнение Клейна — Гордона
Уравнение Клейна — Гордона (иногда Клейна — Гордона — Фока или Клейна — Фока):
\[ {\displaystyle \partial _{x}^{2}\psi +\partial _{y}^{2}\psi +\partial _{z}^{2}\psi -{1 \over c^{2}}\partial _{t}^{2}\psi -{m^{2}c^{2} \over \hbar ^{2}}\psi =0,} \]
или, кратко, используя вдобавок естественные единицы (где  \( {\displaystyle \hbar =c=1} \) ):
 \[ {\displaystyle (◻ -m^{2})\psi =0,} \]
где    — оператор Д’Аламбера.
— является релятивистской версией уравнения Шрёдингера. Используется для описания быстро движущихся частиц, имеющих массу (массу покоя). Строго применимо к описанию скалярных массивных полей (впрочем, пока с определённостью не известных в фундаментальной физике). Может быть обобщено для частиц с целым и полуцелым спинами. Кроме прочего, ясно, что уравнение является обобщением волнового уравнения, подходящего для описания безмассовых скалярных и векторных полей.
« Последнее редактирование: 16 Ноябрь 2018, 11:53:33 от Король Альтов »
Между Ньютоном и мной Альберт Эйнштейн третий лишний.
Вселенная вечна, бесконечна и бесконечномерна.

Оффлайн Король Альтов

  • Президент ЛАН
  • Модератор
  • Местный мудрец
  • *****
  • Сообщений: 21325
  • Страна: ru
  • Рейтинг: +1027/-1607
  • Пол: Мужской
  • Рыцарь истины, свободы и справедливости.
Re: Из чего состоят волны!
« Ответ #2 : 16 Ноябрь 2018, 01:46:52 »
3). Уравнение Дирака
Уравнение Дирака — релятивистски-инвариантное уравнение движения для биспинорного классического поля электрона, применимое также для описания других точечных фермионов со спином 1/2; установлено П. Дираком в 1928.
Уравнение Дирака записывается в виде
 \[ {\displaystyle \left(mc^{2}\alpha _{0}+c\sum _{j=1}^{3}\alpha _{j}p_{j}\right)\psi (\mathbf {x} ,t)=i\hbar {\frac {\partial \psi }{\partial t}}(\mathbf {x} ,t),} \]
где m   — масса электрона (или другого фермиона, описываемого уравнением), c  — скорость света, \( {\displaystyle p_{j}=-i\hbar \partial _{j}} \)  — три оператора компонент импульса (по x, y, z), \[ {\displaystyle \hbar ={h \over 2\pi }} \]  , h — постоянная Планка, x=(x, y, z) и t пространственные координаты и время соответственно, и ψ ( x , t )  — четырёхкомпонентная комплексная волновая функция (биспинор).
 \( {\displaystyle \alpha _{0},\alpha _{1},\alpha _{2},\alpha _{3}\ } \) — линейные операторы над пространством биспиноров, которые действуют на волновую функцию (матрицы Паули). Эти операторы подобраны так, что каждая пара таких операторов антикоммутирует, а квадрат каждого равен единице:
   \( {\displaystyle \alpha _{i}\alpha _{j}=-\alpha _{j}\alpha _{i}\,} \)  где i ≠ j и индексы i , j   меняются от 0 до 3,
     \( {\displaystyle \alpha _{i}^{2}=1} \)  для i   от 0 до 3.
В обсуждаемом представлении эти операторы представляются матрицами размера 4×4 (это минимальный размер матриц, для которых выполняются условия антикоммутации), называемыми альфа-матрицами Дирака
    Весь оператор в скобках в левой части уравнения называется оператором Дирака, точнее, в современной терминологии его следует называть гамильтонианом Дирака, так как оператором Дирака сейчас обычно принято называть ковариантный оператор D, с которым уравнение Дирака записывается в виде DΨ=0 (как описано в следующем замечании).
    В современной физике часто используется ковариантная форма записи уравнения Дирака:
 \[ {\displaystyle \left(i\hbar c\,\gamma ^{\mu }\,\partial _{\mu }-mc^{2}\right)\psi =0.} \]
« Последнее редактирование: 16 Ноябрь 2018, 02:34:15 от Король Альтов »
Между Ньютоном и мной Альберт Эйнштейн третий лишний.
Вселенная вечна, бесконечна и бесконечномерна.

Оффлайн Король Альтов

  • Президент ЛАН
  • Модератор
  • Местный мудрец
  • *****
  • Сообщений: 21325
  • Страна: ru
  • Рейтинг: +1027/-1607
  • Пол: Мужской
  • Рыцарь истины, свободы и справедливости.
Re: Из чего состоят волны!
« Ответ #3 : 16 Ноябрь 2018, 02:35:26 »
Применение для других частиц
Уравнение Дирака справедливо не только для электронов, но и для других элементарных частиц со спином 1/2 (в единицах ħ) — фермионов, например мюонов, нейтрино.
При этом хорошее соответствие опыту получается при прямом применении уравнения Дирака к простым (а не составным) частицам, как те, которые только что упомянуты.
Для протона и нейтрона (составных частиц, состоящих из кварков, связанных глюонным полем, но также обладающих спином 1/2) оно при прямом применении (как к простым частицам) приводит к неправильным значениям магнитных моментов: магнитный момент «дираковского» протона «должен быть» равен ядерному магнетону eħ/2Мc (М — масса протона), а нейтрона (поскольку он не заряжен) — нулю. Опыт же даёт, что магнитный момент протона примерно в 2,8 раза больше ядерного магнетона, а магнитный момент нейтрона отрицателен и по абсолютной величине составляет около 2/3 от магнитного момента протона. Это явление получило название аномального магнитного момента протона и нейтрона.
Аномальный магнитный момент этих частиц свидетельствует об их внутренней структуре, и является одним из важных экспериментальных подтверждений их кваркового строения.
В действительности данное уравнение применимо для кварков, которые также являются элементарными частицами со спином 1/2. Модифицированное уравнение Дирака можно использовать для описания протонов и нейтронов, которые не являются элементарными частицами (они состоят из кварков).
Уравнение Дирака и квантовая теория поля
Уравнение Дирака описывает не амплитуду вероятности для одного электрона, как могло бы показаться, а величину, связанную с плотностью заряда и тока дираковской частицы: в силу сохранения заряда сохраняется величина, которую считали полной вероятностью нахождения частицы. Таким образом, уравнение Дирака — с самого начала многочастичное.
Теория, включающая лишь уравнение Дирака, взаимодействующее с классическим внешним электромагнитным полем, не совсем верно принимает в расчёт рождение и уничтожение частиц. Она хорошо предсказывает магнитный момент электрона и тонкую структуру линий в спектре атомов. Она объясняет спин электрона, поскольку два из четырёх решений уравнения соответствуют двум спиновым состояниям электрона. Два оставшихся решений с отрицательной энергией соответствуют античастице электрона (позитрону), предсказанной Дираком исходя из его теории и почти сразу же вслед за этим открытой экспериментально.
Несмотря на эти успехи, такая теория имеет тот недостаток, что она не описывает взаимодействие квантованного электронного поля с квантованным электромагнитным полем, в том числе и рождение/уничтожение частиц — один из фундаментальных процессов релятивистской теории взаимодействующих полей. Эта трудность разрешена в квантовой теории поля. В случае электронов — добавляется квантованное электромагнитное поле, квантование самого электронного поля и взаимодействие этих полей, а полученная теория называется квантовой электродинамикой.
Между Ньютоном и мной Альберт Эйнштейн третий лишний.
Вселенная вечна, бесконечна и бесконечномерна.

Оффлайн Король Альтов

  • Президент ЛАН
  • Модератор
  • Местный мудрец
  • *****
  • Сообщений: 21325
  • Страна: ru
  • Рейтинг: +1027/-1607
  • Пол: Мужской
  • Рыцарь истины, свободы и справедливости.
Re: Re: Из чего состоят волны!
« Ответ #4 : 17 Ноябрь 2018, 02:33:42 »
4) Волновая функция
Волнова́я фу́нкция, или пси-фу́нкция ψ  — комплекснозначная функция, используемая в квантовой механике для описания чистого состояния системы. Является коэффициентом разложения вектора состояния по базису (обычно координатному):
| ψ ( t ) ⟩ = ∫ Ψ ( x , t ) | x ⟩ d x

где | x ⟩ = | x 1 , x 2 , … , x n ⟩  — координатный базисный вектор, а Ψ ( x , t ) = ⟨ x | ψ ( t ) ⟩   — волновая функция в координатном представлении.
Согласно копенгагенской интерпретации квантовой механики плотность вероятности нахождения частицы в данной точке конфигурационного пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния в координатном представлении.
Физический смысл
В координатном представлении волновая функция  \( {\displaystyle \Psi (x_{1},x_{2},\ldots ,x_{n},t)} \) зависит от координат (или обобщённых координат) системы. Сама волновая функция физического смысла не имеет, но физический смысл приписывается квадрату её модуля  \( {\displaystyle \left|\Psi (x_{1},x_{2},\ldots ,x_{n},t)\right|^{2}} \) , который интерпретируется как плотность вероятности\( {\displaystyle \omega } \) (для дискретных спектров — просто вероятность) обнаружить систему в положении, описываемом координатами \( {\displaystyle x_{1}=x_{01},x_{2}=x_{02},\ldots ,x_{n}=x_{0n}} \) в момент времени t:
\[  {\displaystyle \omega ={\frac {dP}{dV}}=\left|\Psi (x_{1},x_{2},\ldots ,x_{n},t)\right|^{2}=\Psi ^{\ast }\Psi } \] .
Тогда в заданном квантовом состоянии системы, описываемом волновой функцией \( {\displaystyle \Psi (x_{1},x_{2},\ldots ,x_{n},t)} \) , можно рассчитать вероятность P того, что частица будет обнаружена в любой области конфигурационного пространства конечного объема V : \(  {\displaystyle P={\int {dP}}={\int \limits _{V}{\omega }dV}={\int \limits _{V}{\Psi ^{\ast }\Psi }dV}} \)  ( 1 ) .
Следует также отметить, что возможно измерение и разницы фаз волновой функции, например, в опыте Ааронова — Бома.
Нормированность волновой функции
Волновая функция  \( {\displaystyle \Psi } \) по своему смыслу должна удовлетворять так называемому условию нормировки, например, в координатном представлении имеющему вид:
\[  {\displaystyle {\int \limits _{V}{\Psi ^{\ast }\Psi }dV}=1} \]
Это условие выражает тот факт, что вероятность обнаружить частицу с данной волновой функцией где-либо в пространстве равна единице. В общем случае интегрирование должно производиться по всем переменным, от которых зависит волновая функция в данном представлении.
« Последнее редактирование: 17 Ноябрь 2018, 02:50:55 от Король Альтов »
Между Ньютоном и мной Альберт Эйнштейн третий лишний.
Вселенная вечна, бесконечна и бесконечномерна.

Оффлайн Король Альтов

  • Президент ЛАН
  • Модератор
  • Местный мудрец
  • *****
  • Сообщений: 21325
  • Страна: ru
  • Рейтинг: +1027/-1607
  • Пол: Мужской
  • Рыцарь истины, свободы и справедливости.
Re: Из чего состоят волны!
« Ответ #5 : 22 Ноябрь 2018, 02:23:20 »
Описание макроволн, как совокупности микроволн, состоящих из отдельных элементарных частиц и микрочастиц типа ядер атомов и т.д.
Итак мы получили выражение для плотности вероятности элементарной или микроволны \( {\displaystyle \omega } \) (для дискретных спектров — просто вероятность) обнаружить систему в положении, описываемом координатами \( {\displaystyle x_{1}=x_{01},x_{2}=x_{02},\ldots ,x_{n}=x_{0n}} \) в момент времени t:
\[  {\displaystyle \omega ={\frac {dP}{dV}}=\left|\Psi (x_{1},x_{2},\ldots ,x_{n},t)\right|^{2}=\Psi ^{\ast }\Psi } \] .
Здесь следует отметить одно удивительное правило, подтверждающееся многочисленными экспериментальными данными.
Чтобы получить обыкновенную материальную плотность микроволны или элементарной частицы \( { \rho_m } \) ,
достаточно пронормировать плотность вероятности на массу элементарной частицы m !

По сути это есть новая отличная от копенгагенской интерпретация квантовой механики!
\[  {  \rho_m = m \displaystyle \omega =m {\frac {dP}{dV}}=m \left|\Psi (x_{1},x_{2},\ldots ,x_{n},t)\right|^{2}=m \Psi ^{\ast }\Psi } \] .
Исходя из полученного результата несложно получить формулу для материальной плотности макроволны через совокупность материальных плотностей элементарных микроволн!
\[  {  \rho_M = \sum_m \rho_m =\sum_m m \left|\Psi_m (x_{1},x_{2},\ldots ,x_{n},t)\right|^{2}=\sum_m m \Psi_m ^{\ast }\Psi_m  (wave) } \]
Последняя полученная формула представляет собой квантовомеханическую интерпретацию материальной плотности макроволны или просто волны! Однако она в физике не используется поскольку является принципиально новым результатом аналогичным вторичному квантованию полей в квантовой теории поля!
PS. Следует также отметить что полученное математическое описание макроволны чрезвычайно сложно и на практике просто неприменимо и имеет чисто абстрактное, математическое и полезное просто для понимания существа дела значение!
« Последнее редактирование: 22 Ноябрь 2018, 14:55:09 от Король Альтов »
Между Ньютоном и мной Альберт Эйнштейн третий лишний.
Вселенная вечна, бесконечна и бесконечномерна.

Оффлайн Король Альтов

  • Президент ЛАН
  • Модератор
  • Местный мудрец
  • *****
  • Сообщений: 21325
  • Страна: ru
  • Рейтинг: +1027/-1607
  • Пол: Мужской
  • Рыцарь истины, свободы и справедливости.
Re: Из чего состоят волны!
« Ответ #6 : 22 Ноябрь 2018, 14:58:24 »
Виды волн и их модели.
1) Молекулы и атомы - стоячие волны материи.
Модели молекул и атомов обычно строят исходя из решений соответсвующего им вида уравнения Шредингера.
Квантово-химические модели атомов, молекул, позволяют понять сущность химических превращений вещества на атомном и молекулярном уровне его организации. При этом прекрасно работает wave формула, которая несмотря на свой вероятностный характер отражает реальную материальную плотность молекул и атомов.

Яблоков В.А., Захарова О.М. Квантово-химические модели атомов и молекул
С позиции квантовой химии атом – это микросистема, состоящая из ядра и электронов, движущихся в электромагнитном поле ядра. На рис. 1 представлены орбитальные, электронные и электронографические модели атомов первого и второго периодов, построенные с использованием квантовых принципов и правил заполнения электронами энергетических уровней в атомах. Четыре квантовых числа n, l, ml, ms полностью характеризуют движение электронов в поле ядра. Главное квантовое число n характеризует энергию электрона, его удалённость от ядра и соответствует номеру энергетического уровня, на котором находится электрон. Орбитальное квантовое число l определяет форму орбитали и энергию подуровней одного и того же энергетического уровня. Понятие «орбиталь» означает наиболее вероятную область движения электрона в атоме. Магнитное квантовое число ml определяет число орбиталей и их пространственную ориентацию. Главное, орбитальное и магнитное квантовые числа взаимосвязаны. Орбитальное квантовое число l принимает значения на единицу меньше, чем главное квантовое числоn. Если n = 1, то l = 0,  и по форме это сферическая 1s-орбиталь. Если n = 2, то орбитальное квантовое число принимает два значения: l = 0, 1, указывающие на наличие двух подуровней.  Это сферическая 2s- орбиталь (l = 0) и три 2p-орбитали, напоминающие по форме гимнастические гантели, расположенные под углом 90о по осям декартовой системы координат.

Рисунок 1.  Квантово-химические, электронные и электронографические модели атомов первого и второго периодов

Число и пространственное расположение 2p-орбиталей определяет магнитное квантовое числоml, которое принимает значения в пределах изменения орбитального квантового числа от –l до +l. Если l = 0, то ml = 0 (одна s-орбиталь). Если l = 1, то ml принимает три значения –1, 0, +1 (три р-орбитали).

Орбитальные модели атомов показывают пространственное расположение и форму орбиталей, а на электронографических моделях в виде символических квантовых ячеек  дано изображение орбиталей и положение уровней и подуровней на энергетической диаграмме. Следует обратить внимание на размеры атомов. В периодах повторяется одна и та же закономерность – по мере увеличения заряда ядра происходит возрастающая деформация (сжатие) орбиталей под действием электромагнитного притяжения электронов ядром (рис. 1).

Размещение электронов на орбиталях подчиняется одному из важнейших принципов квантовой механики (принцип Паули): на одной орбитали может находиться не больше двух электронов, причем они должны различаться собственным моментом количества движения – спином (англ. spin вращение). Электроны, различающиеся спинами, условно изображают стрелками ­ и ¯. Когда на одной орбитали находятся два электрона, они имеют антипараллельные спины и не мешают друг другу двигаться в поле ядра.

Это свойство напоминает вращение в зацеплении двух шестеренок. Находясь в зацеплении, одна шестеренка вращается по часовой стрелке, другая – против часовой стрелки. Третья шестеренка в зацеплении с двумя другими останавливает вращение. Она лишняя. Так и на одной орбитали может находиться лишь 2 электрона, третий – лишний.

При заполнении электронами энергетических уровней и подуровней в действие вступает квантовый принцип минимума энергии (правило Клечковского). Электроны заполняют орбитали от низшего к высшему энергетическому уровню. Принцип минимума энергии напоминает заполнение этажей многоэтажного дома в период наводнения. Вода поднимается и заполняет все этажи снизу вверх, не пропуская ни одного.

В соответствии с правилом Хунда все р-орбитали заполняются сначала одним электроном и только затем вторым с антипараллельным спином.

Квантовохимические модели атомов позволяют объяснить свойства атомов обмениваться энергией, отдавать и присоединять электроны, изменять геометрическую конфигурацию, образовывать химические связи.

Ковалентная химическая связь образуется при перекрывании валентных электронных облаков. Например, такая связь представлена в орбитальной модели молекулы водорода (рис. 2).

Рисунок 2. Модель ковалентной связи в молекуле водорода
« Последнее редактирование: 18 Декабрь 2018, 18:20:11 от Король Альтов »
Между Ньютоном и мной Альберт Эйнштейн третий лишний.
Вселенная вечна, бесконечна и бесконечномерна.

Оффлайн Король Альтов

  • Президент ЛАН
  • Модератор
  • Местный мудрец
  • *****
  • Сообщений: 21325
  • Страна: ru
  • Рейтинг: +1027/-1607
  • Пол: Мужской
  • Рыцарь истины, свободы и справедливости.
Re: Из чего состоят волны!
« Ответ #7 : 22 Ноябрь 2018, 15:19:43 »
Использование квантовохимического метода валентных связей основано на представлении, о том, что каждая пара атомов в молекуле удерживается вместе при помощи одной или нескольких электронных пар с антпараллельными спинами. С позиции метода валентных связей молекула – это микросистема, состоящая из двух или большего числа ковалентно связанных атомов.Положительно заряженные ядра атомов удерживаются отрицательным зарядом, сосредоточенным в области перекрывания атомных орбиталей. Притяжение ядер атомов к повышенной электронной плотности между ними уравновешивается силой отталкивания ядер между собой. Образуется устойчивая микросистема, в которой длина ковалентной связи равна расстоянию между ядрами.

В молекуле фтора так же, как и в молекуле водорода, имеется неполярная ковалентная связь. При перекрывании 2р1-орбиталей электронная пара создает между ядрами атомов повышенную электронную плотность и удерживает молекулу в устойчивом состоянии (рис. 3).

F–F
Рисунок 3. Модель ковалентной связи в молекуле фтора
Под неполярной ковалентной связью подразумевается такое перекрывание валентных орбиталей, в результате которого совпадают центры тяжести положительных и отрицательных зарядов.

Возможно образование полярной ковалентной связи при перекрывании 1s1- и 2р1-орбиталей. На рис. 4 представлена модель фтороводорода с полярной ковалентной связью. Электронная плотность между ковалентно связанными атомами смещается к атому фтора, заряд ядра которого (+9) оказывает большее электромагнитное притяжение по сравнению с ядром атома водорода с зарядом (+1).

H–F
Рисунок 4. Модель полярной ковалентной связи в молекуле фтороводорода
Ионная связь обусловлена притяжением электрически заряженных частиц – ионов. На рис. 5 представлена модель образования ионной связи во фториде лития. Сильное электромагнитное поле, создаваемое ядром атома фтора, захватывает и удерживает на р-орбитали электрон, принадлежавший атому лития. Атом лития, лишенный электрона, изменяет геометрическую конфигурацию (исчезла 2s-орбиталь), становится положительно заряженным ионом и притягивается к отрицательно заряженному иону фтора, который приобрел лишний электрон на р-орбиталь.

Рисунок 5. Модель ионной пары Li+F- фторида лития
Силы электростатического притяжения противоположно заряженных ионов и отталкивания электронных оболочек ионов лития и фтора уравновешены и удерживают ионы на расстоянии, соответствующем длине ионной связи. Перекрывание орбиталей в соединениях с ионной связью практически отсутствует.

Особый вид химической связи проявляется в атомах металлов. Кристалл металла (рис. 6) состоит из положительно заряженных ионов, в поле которых свободно движутся валентные электроны («электронное облако»).

Рисунок 6. Модель кристалла металлического лития
« Последнее редактирование: 22 Ноябрь 2018, 15:30:37 от Король Альтов »
Между Ньютоном и мной Альберт Эйнштейн третий лишний.
Вселенная вечна, бесконечна и бесконечномерна.

Оффлайн Король Альтов

  • Президент ЛАН
  • Модератор
  • Местный мудрец
  • *****
  • Сообщений: 21325
  • Страна: ru
  • Рейтинг: +1027/-1607
  • Пол: Мужской
  • Рыцарь истины, свободы и справедливости.
Re: Из чего состоят волны!
« Ответ #8 : 22 Ноябрь 2018, 15:39:12 »
Ионы и «электронное облако» взаимно удерживают друг друга в устойчивом состоянии. Благодаря высокой подвижности электронов металлы обладают электронной проводимостью.

В молекулах атомы, связанные несколькими ковалентными связями, изменяют геометрическую конфигурацию. Рассмотрим проявление этого свойства на примере атома углерода (1s2-орбиталь в моделях атома углерода не изображена, т.к. не участвует в образовании химической связи).

Экспериментально установлено, что в молекуле СН4 атом углерода образует с атомами водорода четыре одинаковые ковалентные связи, эквивалентные по своим энергетическим и пространственным характеристикам. Трудно представить четыре одинаковые ковалентные связи, если иметь в виду, что в углероде валентные электроны располагаются на двух энергетических 2s и 2p подуровнях:
В основном (невозбужденном) состоянии углерод образует лишь две ковалентные связи. В возбужденном состоянии один электрон с подуровня 2s переходит на более высокий энергетический подуровень 2p. В результате такого перескока электрона увеличивается суммарная энергия 2s- и 2p-орбиталей и валентность атома углерода изменяется до четырех:
И все же этого недостаточно, чтобы объяснить четыре равноценные ковалентные связи в молекуле СН4, т.к. 2s- и 2p-орбитали имеют разную форму и пространственное расположение. Проблема была решена введением гипотезы огибридизации – смешении валентных электронов в подуровнях одного и того же энергетического уровня. В молекуле метана одна 2s- и три 2р-орбитали атома углерода в результате гибридизации превращаются в четыре равноценные sp3-гибридные орбитали:
В отличие от невозбужденного (основного) состояния атома углерода, в котором три 2р-орбитали атома расположены под углом 90о (рис. 7,а), в молекуле метана (рис. 7,b) равноценные по форме и размерам sp3 -гибридные атома углерода расположены под углом 109о28'.

Рисунок 7. Модель молекулы метана
В молекуле этилена С2Н4 (рис. 8,а) атомы углерода находятся в sр2-гибридном состоянии. В гибридизации участвует 2s-орбиталь и две 2р-орбитали. В результате гибридизации атомы углерода образуют три равноценные sp2-гибридные орбитали, расположенные под углом 120о на плоскости; 2pz-орбиталь не участвует в гибридизации.

Рисунок  8. Модель молекулы этилена
Между Ньютоном и мной Альберт Эйнштейн третий лишний.
Вселенная вечна, бесконечна и бесконечномерна.

Оффлайн Король Альтов

  • Президент ЛАН
  • Модератор
  • Местный мудрец
  • *****
  • Сообщений: 21325
  • Страна: ru
  • Рейтинг: +1027/-1607
  • Пол: Мужской
  • Рыцарь истины, свободы и справедливости.
Re: Из чего состоят волны!
« Ответ #9 : 22 Ноябрь 2018, 15:46:38 »
В молекуле этилена атомы углерода связаны не только s-связью, но и  p-связью. Она образуется в результате перекрывания рz-орбиталей с образованием двух областей перекрывания над и под осью, соединяющей ядра, по обе стороны от оси s-связи (рис.8).

Модель тройной связи представлена в молекуле ацетилена (рис. 9). При смешении одной 2s- и одной 2рх-орбитали атома углерода образуются две sp-гибридные орбитали, которые располагаются на линии, соединяющей ядра атомов (угол 180о). Негибридные 2ру-и2рz-орбитали разных атомов углерода перекрываются, образуя две p-связи во взаимно перпендикулярных плоскостях (рис. 9).

Рисунок  9. Модель молекулы ацетилена
Молекулы, подобно атомам, проявляют свойство разрывать и образовывать химические связи, изменять геометрическую конфигурацию, переходить из электронейтрального в ионное состояние. Указанные свойства представлены в реакции между молекулами аммиака NН3 и фтороводорода HF (рис. 10). Разрывается ковалентная связь в молекуле фтороводорода, и образуется ковалентная донорно-акцепторная связь между азотом и водородом в молекуле аммиака. Донором выступает неподелённая пара электронов атома азота, акцептором – вакантная орбиталь атома водорода (рис. 10). Геометрическая конфигурация молекулы NН3 (тригональная пирамида, валентный угол 107о18') изменяется на тетраэдрическую конфигурацию иона NН4+ (109о28'). Завершающим процессом является образование ионной связи в кристаллической структуре фторида аммония. Орбитальные модели молекул позволяют показать все перечисленные выше свойства в одной реакции: разрывать и образовывать химические связи, изменять геометрическую конфигурацию, переходить из электронейтрального в ионное состояние.

Рис. 10. Модель образования ионной пары кристаллического NH4+F-
Химическая реакция с использованием символов химических элементов:

NН3 + HF → NН4F,

дает обобщенное выражение того, что раскрыто в орбитальных моделях молекул. Химические реакции, представленные орбитальными моделями и символами химических элементов, взаимно дополняют друг друга. В этом их достоинство. Овладение элементарными знаниями квантово-химического выражения структуры и состава атомов и молекул ведет к пониманию ключевых химических понятий: ковалентная полярная и неполярная связь, донорно-акцепторная связь, ионная связь, геометрическая конфигурация атомов и молекул, химическая реакция. И на фундаменте этих знаний можно уверенно использовать символику химических элементов и соединений для краткого описания химических состояний и превращений вещества.

Приведем ещё пример реакции, рассматриваемой с позиций квантовой химии. Вода проявляет свойства слабого электролита. Электролитическую диссоциацию обычно представляют уравнением:

Н2О ⇄Н+ + ОН-

или

Н2О + Н2О ⇄Н3О+ + ОН-.

Деление молекул воды на положительно и отрицательно заряженные ионы раскрывает квантовохимическая модель реакции электролитической диссоциации (рис. 11).

Рисунок 11. Модель электролитической диссоциации воды
Молекула воды представляет собой искаженную пирамиду (валентный угол 104о30'). Две sр3-гибридные орбитали атома кислорода образуют s-связи с атомами водорода. Две другие sр3-гибридные орбитали располагают свободными парами электронов с антипараллельными спинами. Разрыв ковалентной Н−О связи в одной из молекул приводит к образованию на соседней молекуле ковалентной химической связи по донорно-акцепторному механизму. Ион водорода, располагающий вакантной орбиталью, выступает в роли акцептора электронной пары атома кислорода соседней молекулы воды. В этом примере, как и в предыдущем, квантово-химический подход позволяет понять физико-химический смысл процесса электролитической диссоциации воды.
***
Мышление – это процесс, с помощью которого мы опосредствованно можем судить о том, что скрыто от нашего чувственного восприятия. Квантовая химия дает зрительный образ химических процессов и состояний вещества, раскрывает то, что скрыто от нашего чувственного восприятия, побуждает учиться и размышлять.
Между Ньютоном и мной Альберт Эйнштейн третий лишний.
Вселенная вечна, бесконечна и бесконечномерна.

Оффлайн Король Альтов

  • Президент ЛАН
  • Модератор
  • Местный мудрец
  • *****
  • Сообщений: 21325
  • Страна: ru
  • Рейтинг: +1027/-1607
  • Пол: Мужской
  • Рыцарь истины, свободы и справедливости.
Re: Из чего состоят волны!
« Ответ #10 : 16 Декабрь 2018, 19:53:24 »
2) Звуковые волны.
Звуковые волны – это механические колебания, которые, распространяясь и взаимодействуя с органом слуха, воспринимаются человеком.

Звуковая волна.
Раздел, который занимается в физике этими волнами, называется акустика. Профессия людей, которых в простонародье называют «слухачами», – акустики. Звуковая волна – это волна, распространяющаяся в упругой среде, это продольная волна, и, когда она распространяется в упругой среде, чередуются сжатие и разряжение. Передается она с течением времени на расстояние.

Распространение звуковой волны.
К звуковым волнам относятся такие колебания, которые осуществляются с частотой от 20 до 20 000 Гц. Для этих частот соответствуют длины волн 17 м (для 20 Гц) и 17 мм (для 20 000 Гц). Этот диапазон будет называться слышимым звуком. Эти длины волн приведены для воздуха, скорость распространения звука в котором равна 340 m/sek.
Существуют еще такие диапазоны, которыми занимаются акустики, – инфразвуковые и ультразвуковые. Инфразвуковые – это те, которые имеют частоту меньше 20 Гц. А ультразвуковые – это те, которые имеют частоту больше 20 000 Гц.

Диапазоны звуковых волн
Каждый образованный человек должен ориентироваться в диапазоне частот звуковых волн и знать, что если он пойдет на УЗИ, то картинка на экране компьютера будет строиться с частотой больше 20 000 Гц.
Ультра- и инфразвук
Ультразвук – это механические волны, аналогичные звуковым, но имеющие частоту от 20 кГц до миллиарда герц.
Волны, имеющие частоту более миллиарда герц, называют гиперзвуком.
Ультразвук применяется для обнаружения дефектов в литых деталях. На исследуемую деталь направляют поток коротких ультразвуковых сигналов. В тех местах, где дефектов нет, сигналы проходят сквозь деталь, не регистрируясь приемником.
Если же в детали есть трещина, воздушная полость или другая неоднородность, то ультразвуковой сигнал отражается от нее и, возвращаясь, попадает в приемник. Такой метод называют ультразвуковой дефектоскопией.
Другими примерами применения ультразвука являются аппараты ультразвукового исследования, аппараты УЗИ, ультразвуковая терапия.
Инфразвук – механические волны, аналогичные звуковым, но имеющие частоту менее 20 Гц. Они не воспринимаются человеческим ухом.
Естественными источниками инфразвуковых волн являются шторм, цунами, землетрясения, ураганы, извержения вулканов, гроза.
Инфразвук – тоже важные волны, которые используют для колебаний поверхности (например, чтобы разрушить какие-нибудь большие объекты). Мы запускаем инфразвук в почву – и почва дробится. Где такое используется? Например, на алмазных приисках, где берут руду, в которых есть алмазные компоненты, и дробят на мелкие частицы, чтобы найти эти алмазные вкрапления.

Применение инфразвука
Скорость распространения звуковой волны
Скорость звука зависит от условий среды и температуры

Скорость распространения звуковой волны в различных средах
Обратите внимание: в воздухе скорость звука при t=0C равна V=331m/sek, при t=1C скорость увеличивается на 1,7m/sek. Если вы исследователь, то вам могут пригодиться такие знания. Вы, может быть, даже придумаете какой-нибудь температурный датчик, который будет фиксировать расхождения температуры путем изменения скорости звука в среде. Мы уже знаем, что чем плотнее среда, чем более серьезное взаимодействие между частицами среды, тем быстрее распространяется волна. Мы в прошлом параграфе обсудили это на примере сухого и воздуха влажного воздуха. Для воды скорость распространения звука V=3400m/sek. Если создать звуковую волну (стучать по камертону), то скорость ее распространения в воде будет в 4 раза больше, чем в воздухе. По воде информация дойдет быстрее в 4 раза, чем по воздуху. А в стали и того быстрее: V=5000m/sek=5km/sek.

Скорость распространения звуковой волны
« Последнее редактирование: 18 Декабрь 2018, 18:21:13 от Король Альтов »
Между Ньютоном и мной Альберт Эйнштейн третий лишний.
Вселенная вечна, бесконечна и бесконечномерна.

Оффлайн Король Альтов

  • Президент ЛАН
  • Модератор
  • Местный мудрец
  • *****
  • Сообщений: 21325
  • Страна: ru
  • Рейтинг: +1027/-1607
  • Пол: Мужской
  • Рыцарь истины, свободы и справедливости.
Re: Из чего состоят волны!
« Ответ #11 : 16 Декабрь 2018, 20:21:07 »
Вы знаете из былин, что Илья Муромец пользовался (да и все богатыри и обычные русские люди и мальчики из РВС Гайдара), пользовались очень интересным способом обнаружения объекта, который приближается, но располагается еще далеко. Звук, который он издает при движении, еще не слышен. Илья Муромец, припав ухом к земле, может ее услышать. Почему? Потому что по твердой земле передается звук с большей скоростью, значит, быстрее дойдет до уха Ильи Муромца, и он сможет подготовиться к встрече неприятеля.
Музыкальные волны. Шум
Самые интересные звуковые волны – музыкальные звуки и шумы. Какие предметы могут создать звуковые волны? Если мы возьмем источник волны и упругую среду, если мы заставим источник звука колебаться гармонически, то у нас возникнет замечательная звуковая волна, которая будет называться музыкальным звуком. Этими источниками звуковых волн могут быть, например, струны гитары или рояля. Это может быть звуковая волна, которая создана в зазоре воздушном трубы (органа или трубы). Из уроков музыки вы знаете ноты: до, ре, ми, фа, соль, ля, си. В акустике они называются тонами.

Музыкальные тоны
У всех предметов, которые могут издавать тоны, будут особенности. Чем они различаются? Они различаются длиной волны и частотой. Если эти звуковые волны создаются не гармонически звучащими телами или не связаны в общую какую-то оркестровую пьесу, то такое количество звуков будет называться шумом.
Шум – беспорядочные колебания различной физической природы, отличающиеся сложностью временной и спектральной структуры. Понятие шума есть бытовое и есть физическое, они очень схожи, и поэтому мы его вводим как отдельный важный объект рассмотрения.
Характеристики звуковых волн
Переходим к количественным оценкам звуковых волн. Какие у музыкальных звуковых волн характеристики? Эти характеристики распространяются исключительно на гармонические звуковые колебания. Итак, громкость звука. Чем определяется громкость звука? Рассмотрим распространение звуковой волны во времени или колебания источника звуковой волны.

Громкость звука
При этом, если мы добавили в систему не очень много звука (стукнули тихонечко по клавише фортепиано, например), то будет тихий звук. Если мы громко, высоко поднимая руку, вызовем этот звук, стукнув по клавише, получим громкий звук. От чего это зависит? У тихого звука амплитуда колебаний меньше, чем у громкого звука .
Следующая важная характеристика музыкального звука и любого другого – высота. От чего зависит высота звука? Высота зависит от частоты. Мы можем заставить источник колебаться часто, а можем заставить его колебаться не очень быстро (то есть совершать за единицу времени меньшее количество колебаний). Рассмотрим развертку по времени высокого и низкого звука одной амплитуды.

Высота звука
Можно сделать интересный вывод. Если человек поет басом, то у него источник звука (это голосовые связки) колеблется в несколько раз медленнее, чем у человека, который поет сопрано. Во втором случае голосовые связки колеблются чаще, поэтому чаще вызывают очаги сжатия и разряжения в распространении волны.
Есть еще одна интересная характеристика звуковых волн, которую физики не изучают. Это тембр. Вы знаете и легко различаете одну и ту же музыкальную пьесу, которую исполняют на балалайке или на виолончели. Чем отличаются эти звучания или это исполнение? Мы попросили в начале эксперимента людей, которые извлекают звуки, делать их примерно одинаковой амплитуды, чтобы была одинакова громкость звука. Это как в случае оркестра: если не требуется выделения какого-то инструмента, все играют примерно одинаково, в одинаковую силу. Так вот тембр балалайки и виолончели отличается. Если бы мы нарисовали звук, который извлекают из одного инструмента, из другого, с помощью диаграмм, то они были бы одинаковыми. Но вы легко отличаете эти инструменты по звуку.
Еще один пример важности тембра. Представьте себе двух певцов, которые заканчивают один и тот же музыкальный вуз у одинаковых педагогов. Они учились одинаково хорошо на пятерки. Почему-то один становится выдающимся исполнителем, а другой всю жизнь недоволен своей карьерой. На самом деле это определяется исключительно их инструментом, который вызывает как раз голосовые колебания в среде, т. е. у них отличаются голоса по тембру.
« Последнее редактирование: 16 Декабрь 2018, 20:36:18 от Король Альтов »
Между Ньютоном и мной Альберт Эйнштейн третий лишний.
Вселенная вечна, бесконечна и бесконечномерна.

Оффлайн Король Альтов

  • Президент ЛАН
  • Модератор
  • Местный мудрец
  • *****
  • Сообщений: 21325
  • Страна: ru
  • Рейтинг: +1027/-1607
  • Пол: Мужской
  • Рыцарь истины, свободы и справедливости.
Re: Из чего состоят волны!
« Ответ #12 : 16 Декабрь 2018, 20:52:13 »
Звук — физическое явление, представляющее собой распространение в виде упругих волн механических колебаний в твёрдой, жидкой или газообразной среде. В узком смысле под звуком имеют в виду эти колебания, рассматриваемые в связи с тем, как они воспринимаются органами чувств животных.
Как и любая волна, звук характеризуется амплитудой и частотой. Амплитуда характеризует громкость звука. Частота определяет тон, высоту. Обычный человек способен слышать звуковые колебания в диапазоне частот от 16—20 Гц до 15—20 кГц. Звук ниже диапазона слышимости человека называют инфразвуком; выше: до 1 ГГц, — ультразвуком, от 1 ГГц — гиперзвуком. Громкость звука сложным образом зависит от эффективного звукового давления, частоты и формы колебаний, а высота звука — не только от частоты, но и от величины звукового давления.
Среди слышимых звуков следует особо выделить фонетические, речевые звуки и фонемы (из которых состоит устная речь) и музыкальные звуки (из которых состоит музыка). Музыкальные звуки содержат не один, а несколько тонов, а иногда и шумовые компоненты в широком диапазоне частот.
Понятие о звуке

Звуковые волны в воздухе — чередующиеся области сжатия и разрежения.
Звуковые волны могут служить примером колебательного процесса. Всякое колебание связано с нарушением равновесного состояния системы и выражается в отклонении её характеристик от равновесных значений с последующим возвращением к исходному значению. Для звуковых колебаний такой характеристикой является давление в точке среды, а её отклонение — звуковым давлением.
Если произвести резкое смещение частиц упругой среды в одном месте, например с помощью поршня, то в этом месте увеличится давление. Благодаря упругим связям частиц давление передаётся на соседние частицы, которые, в свою очередь, воздействуют на следующие, и область повышенного давления как бы перемещается в упругой среде. За областью повышенного давления следует область пониженного давления, и, таким образом, образуется ряд чередующихся областей сжатия и разрежения, распространяющихся в среде в виде волны. Каждая частица упругой среды в этом случае будет совершать колебательные движения.
В жидких и газообразных средах, где отсутствуют значительные колебания плотности, акустические волны имеют продольный характер, то есть направление колебания частиц совпадает с направлением перемещения волны. В твёрдых телах, помимо продольных деформаций, возникают также упругие деформации сдвига, обусловливающие возбуждение поперечных (сдвиговых) волн; в этом случае частицы совершают колебания перпендикулярно направлению распространения волны. Скорость распространения продольных волн значительно больше скорости распространения сдвиговых волн.
В философии, психологии и экологии средств коммуникации звук исследуется в связи с его воздействием на восприятие и мышление (речь идёт, например, об акустическом пространстве как пространстве, создаваемом воздействием электронных средств коммуникации).
Между Ньютоном и мной Альберт Эйнштейн третий лишний.
Вселенная вечна, бесконечна и бесконечномерна.

Оффлайн Король Альтов

  • Президент ЛАН
  • Модератор
  • Местный мудрец
  • *****
  • Сообщений: 21325
  • Страна: ru
  • Рейтинг: +1027/-1607
  • Пол: Мужской
  • Рыцарь истины, свободы и справедливости.
Re: Из чего состоят волны!
« Ответ #13 : 16 Декабрь 2018, 20:56:18 »
Физические параметры звука
Колебательная скорость измеряется в м/с или см/с. В энергетическом отношении реальные колебательные системы характеризуются изменением энергии вследствие частичной её затраты на работу против сил трения и излучение в окружающее пространство. В упругой среде колебания постепенно затухают. Для характеристики затухающих колебаний используются коэффициент затухания (S), логарифмический декремент (D) и добротность (Q).
Коэффициент затухания отражает быстроту убывания амплитуды с течением времени. Если обозначить время, в течение которого амплитуда уменьшается в е = 2,718 раз, через τ, то:
\[ S=\frac{1}{\tau} \].
Уменьшение амплитуды за один цикл характеризуется логарифмическим декрементом. Логарифмический декремент равен отношению периода колебаний ко времени затухания τ :
\[ D=\frac{T}{\tau} \]
Если на колебательную систему с потерями действовать периодической силой, то возникают вынужденные колебания, характер которых в той или иной мере повторяет изменения внешней силы. Частота вынужденных колебаний не зависит от параметров колебательной системы. Напротив, амплитуда зависит от массы, механического сопротивления и гибкости системы. Такое явление, когда амплитуда колебательной скорости достигает максимального значения, называется механическим резонансом. При этом частота вынужденных колебаний совпадает с частотой собственных незатухающих колебаний механической системы.

При частотах воздействия, значительно меньших резонансной, внешняя гармоническая сила уравновешивается практически только силой упругости. При частотах возбуждения, близких к резонансной, главную роль играют силы трения. При условии, когда частота внешнего воздействия значительно больше резонансной, поведение колебательной системы зависит от силы инерции или массы.

Свойство среды проводить акустическую энергию, в том числе и ультразвуковую, характеризуется акустическим сопротивлением. Акустическое сопротивление среды выражается отношением звуковой плотности к объёмной скорости ультразвуковых волн. Удельное акустическое сопротивление среды устанавливается соотношением амплитуды звукового давления в среде к амплитуде колебательной скорости её частиц. Чем больше акустическое сопротивление, тем выше степень сжатия и разрежения среды при данной амплитуде колебания частиц среды. Численно, удельное акустическое сопротивление среды (Z) находится как произведение плотности среды  ρ на скорость (с) распространения в ней звуковых волн.
\[ Z=\rho c \]
Удельное акустическое сопротивление измеряется в паскаль-секундах на метр (Па·с/м) или дин•с/см³ (СГС); 1 Па·с/м = 10−1 дин • с/см³.
Значение удельного акустического сопротивления среды часто выражается в г/с·см², причём 1 г/с·см² = 1 дин•с/см³. Акустическое сопротивление среды определяется поглощением, преломлением и отражением ультразвуковых волн.
« Последнее редактирование: 16 Декабрь 2018, 21:03:34 от Король Альтов »
Между Ньютоном и мной Альберт Эйнштейн третий лишний.
Вселенная вечна, бесконечна и бесконечномерна.

Оффлайн Король Альтов

  • Президент ЛАН
  • Модератор
  • Местный мудрец
  • *****
  • Сообщений: 21325
  • Страна: ru
  • Рейтинг: +1027/-1607
  • Пол: Мужской
  • Рыцарь истины, свободы и справедливости.
Re: Из чего состоят волны!
« Ответ #14 : 16 Декабрь 2018, 21:06:53 »
Звуковое, или акустическое, давление в среде представляет собой разность между мгновенным значением давления в данной точке среды при наличии звуковых колебаний и статическим давлением в той же точке при их отсутствии. Иными словами, звуковое давление есть переменное давление в среде, обусловленное акустическими колебаниями. Максимальное значение переменного акустического давления (амплитуда давления) может быть рассчитано через амплитуду колебания частиц:
\[ P=2\pi f\rho cA \]
где Р — максимальное акустическое давление (амплитуда давления);
    f — частота;
    с — скорость распространения ультразвука;
    ρ  — плотность среды;
    А — амплитуда колебания частиц среды.
На расстоянии в половину длины волны (λ/2) значение звукового давления из положительного становится отрицательным. Разница давлений в двух точках с максимальным и минимальным его значением (отстоящих друг от друга на λ/2 вдоль направления распространения волны) равна 2Р.

Для выражения звукового давления в единицах СИ используется паскаль (Па), равный давлению в один ньютон на квадратный метр (Н/м²). Звуковое давление в системе СГС измеряется в дин/см²; 1 дин/см² = 10−1Па = 10−1Н/м². Наряду с указанными единицами часто пользуются внесистемными единицами давления — атмосфера (атм) и техническая атмосфера (ат), при этом 1 ат = 0,98⋅106 дин/см² = 0,98⋅105 Н/м². Иногда применяется единица, называемая баром или микробаром (акустическим баром); 1 бар = 106 дин/см².

Давление, оказываемое на частицы среды при распространении волны, является результатом действия упругих и инерционных сил. Последние вызываются ускорениями, величина которых также растёт в течение периода от нуля до максимума (амплитудное значение ускорения). Кроме того, в течение периода ускорение меняет свой знак.

Максимальные значения величин ускорения и давления, возникающие в среде при прохождении в ней ультразвуковых волн, для данной частицы не совпадают во времени. В момент, когда перепад ускорения достигает своего максимума, перепад давления становится равным нулю. Амплитудное значение ускорения (а) определяется выражением:
 \[ {\displaystyle a=\omega ^{2}A=(2\pi f)^{2}A} \]
Если бегущие ультразвуковые волны наталкиваются на препятствие, оно испытывает не только переменное давление, но и постоянное. Возникающие при прохождении ультразвуковых волн участки сгущения и разрежения среды создают добавочные изменения давления в среде по отношению к окружающему её внешнему давлению. Такое добавочное внешнее давление носит название давления излучения (радиационного давления). Оно служит причиной того, что при переходе ультразвуковых волн через границу жидкости с воздухом образуются фонтанчики жидкости и происходит отрыв отдельных капелек от поверхности. Этот механизм нашёл применение в образовании аэрозолей лекарственных веществ. Радиационное давление часто используется при измерении мощности ультразвуковых колебаний в специальных измерителях — ультразвуковых весах.
« Последнее редактирование: 16 Декабрь 2018, 21:09:50 от Король Альтов »
Между Ньютоном и мной Альберт Эйнштейн третий лишний.
Вселенная вечна, бесконечна и бесконечномерна.

Оффлайн Король Альтов

  • Президент ЛАН
  • Модератор
  • Местный мудрец
  • *****
  • Сообщений: 21325
  • Страна: ru
  • Рейтинг: +1027/-1607
  • Пол: Мужской
  • Рыцарь истины, свободы и справедливости.
Re: Из чего состоят волны!
« Ответ #15 : 16 Декабрь 2018, 21:16:44 »
Скорость звука — скорость распространения звуковых волн в среде.
Как правило, в газах скорость звука меньше, чем в жидкостях.
Скорость звука в воздухе зависит от температуры и в нормальных условиях составляет примерно 340 м/с.
Скорость звука в любой среде вычисляется по формуле:
\[ c = \sqrt{\frac{1}{\beta\rho}} \],
где β  — адиабатическая сжимаемость среды; ρ — плотность
Гро́мкость зву́ка — субъективное восприятие силы звука (абсолютная величина слухового ощущения). Громкость главным образом зависит от звукового давления, амплитуды и частоты звуковых колебаний. Также на громкость звука влияют его спектральный состав, локализация в пространстве, тембр, длительность воздействия звуковых колебаний, индивидуальная чувствительность слухового анализатора человека и другие факторы.
Генерация звука
Обычно для генерации звука применяются колеблющиеся тела различной природы, вызывающие колебания окружающего воздуха. Примером такой генерации может служить использование голосовых связок, динамиков или камертона. Большинство музыкальных инструментов основано на том же принципе. Исключением являются духовые инструменты, в которых звук генерируется за счёт взаимодействия потока воздуха с неоднородностями в инструменте. Для создания когерентного звука применяются так называемые звуковые или фононные лазеры.
Ультразвук — упругие звуковые колебания высокой частоты.
Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16 Гц-20 кГц; колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости).
Распространение ультразвука
Распространение ультразвука — это процесс перемещения в пространстве и во времени возмущений, имеющих место в звуковой волне.
Звуковая волна распространяется в веществе, находящемся в газообразном, жидком или твёрдом состоянии, в том же направлении, в котором происходит смещение частиц этого вещества, то есть она вызывает деформацию среды. Деформация заключается в том, что происходит последовательное разрежение и сжатие определённых объёмов среды, причём расстояние между двумя соседними областями соответствует длине ультразвуковой волны. Чем больше удельное акустическое сопротивление среды, тем больше степень сжатия и разрежения среды при данной амплитуде колебаний.
Частицы среды, участвующие в передаче энергии волны, колеблются около положения своего равновесия. Скорость, с которой частицы колеблются около среднего положения равновесия называется колебательной скоростью. Колебательная скорость частиц изменяется согласно уравнению:
\[  V=U\sin(2\pi ft+G) \],
где V — величина колебательной скорости;
    U — амплитуда колебательной скорости;
    f — частота ультразвука;
    t — время;
    G — разность фаз между колебательной скоростью частиц и переменным акустическим давлением.
Амплитуда колебательной скорости характеризует максимальную скорость, с которой частицы среды движутся в процессе колебаний, и определяется частотой колебаний и амплитудой смещения частиц среды.
\[ U=2\pi fA \],
Дифракция, интерференция
При распространении ультразвуковых волн возможны явления дифракции, интерференции и отражения.
Дифракция (огибание волнами препятствий) имеет место тогда, когда длина ультразвуковой волны сравнима (или больше) с размерами находящегося на пути препятствия. Если препятствие по сравнению с длиной акустической волны велико, то явления дифракции нет.
При одновременном движении в среде нескольких ультразвуковых волн в каждой определённой точке среды происходит суперпозиция (наложение) этих волн. Наложение волн одинаковой частоты друг на друга называется интерференцией. Если в процессе прохождения через объект ультразвуковые волны пересекаются, то в определённых точках среды наблюдается усиление или ослабление колебаний. При этом состояние точки среды, где происходит взаимодействие, зависит от соотношения фаз ультразвуковых колебаний в данной точке. Если ультразвуковые волны достигают определённого участка среды в одинаковых фазах (синфазно), то смещения частиц имеют одинаковые знаки и интерференция в таких условиях приводит к увеличению амплитуды колебаний. Если же волны приходят к точке среды в противофазе, то смещение частиц будет разнонаправленным, что приводит к уменьшению амплитуды колебаний.
« Последнее редактирование: 16 Декабрь 2018, 21:34:38 от Король Альтов »
Между Ньютоном и мной Альберт Эйнштейн третий лишний.
Вселенная вечна, бесконечна и бесконечномерна.

Оффлайн Король Альтов

  • Президент ЛАН
  • Модератор
  • Местный мудрец
  • *****
  • Сообщений: 21325
  • Страна: ru
  • Рейтинг: +1027/-1607
  • Пол: Мужской
  • Рыцарь истины, свободы и справедливости.
Re: Из чего состоят волны!
« Ответ #16 : 16 Декабрь 2018, 21:39:45 »
Поглощение ультразвуковых волн
Поскольку среда, в которой распространяется ультразвук, обладает вязкостью, теплопроводностью и имеет другие причины внутреннего трения, то при распространении волны происходит поглощение, то есть по мере удаления от источника амплитуда и энергия ультразвуковых колебаний становятся меньше. Среда, в которой распространяется ультразвук, вступает во взаимодействие с проходящей через него энергией и часть её поглощает. Преобладающая часть поглощённой энергии преобразуется в тепло, меньшая часть вызывает в передающем веществе необратимые структурные изменения. Поглощение является результатом трения частиц друг об друга, в различных средах оно различно. Поглощение зависит также от частоты ультразвуковых колебаний. Теоретически, поглощение пропорционально квадрату частоты.
Величину поглощения можно характеризовать коэффициентом поглощения, который показывает, как изменяется интенсивность ультразвука в облучаемой среде. С ростом частоты он увеличивается. Интенсивность ультразвуковых колебаний в среде уменьшается по экспоненциальному закону. Этот процесс обусловлен внутренним трением, теплопроводностью поглощающей среды и её структурой. Его ориентировочно характеризует величина полупоглощающего слоя, которая показывает на какой глубине интенсивность колебаний уменьшается в два раза (точнее в 2,718 раза или на 63 %). По Пальману, при частоте, равной 0,8 МГц, средние величины полупоглощающего слоя для некоторых тканей таковы: жировая ткань — 6,8 см; мышечная — 3,6 см; жировая и мышечная ткани вместе — 4,9 см. С увеличением частоты ультразвука величина полупоглощающего слоя уменьшается. Так, при частоте, равной 2,4 МГц, интенсивность ультразвука, проходящего через жировую и мышечную ткани, уменьшается в два раза на глубине 1,5 см.
Кроме того, возможно аномальное поглощение энергии ультразвуковых колебаний в некоторых диапазонах частот — это зависит от особенностей молекулярного строения данной ткани. Известно, что 2/3 энергии ультразвука затухает на молекулярном уровне и 1/3 на уровне микроскопических тканевых структур.
Глубина проникновения ультразвуковых волн
Под глубиной проникновения ультразвука понимают глубину, при которой интенсивность уменьшается вдвое. Эта величина обратно пропорциональна поглощению: чем сильнее среда поглощает ультразвук, тем меньше расстояние, на котором интенсивность ультразвука ослабляется наполовину.
Рассеяние ультразвуковых волн
Если в среде имеются неоднородности, то происходит рассеяние звука, которое может существенно изменить простую картину распространения ультразвука и, в конечном счете, также вызвать затухание волны в первоначальном направлении распространения.
Преломление ультразвуковых волн
Так как акустическое сопротивление мягких тканей человека ненамного отличается от сопротивления воды, можно предполагать, что на границе раздела сред (эпидермис — дерма — фасция — мышца) будет наблюдаться преломление ультразвуковых волн.
Отражение ультразвуковых волн
На явлении отражения основана ультразвуковая диагностика. Отражение происходит в приграничных областях кожи и жира, жира и мышц, мышц и костей. Если ультразвук при распространении наталкивается на препятствие, то происходит отражение, если препятствие мало, то ультразвук его как бы обтекает. Неоднородности организма не вызывают значительных отклонений, так как по сравнению с длиной волны (2 мм) их размерами (0,1—0,2 мм) можно пренебречь. Если ультразвук на своём пути наталкивается на органы, размеры которых больше длины волны, то происходит преломление и отражение ультразвука. Наиболее сильное отражение наблюдается на границах кость — окружающие её ткани и ткани — воздух. У воздуха малая плотность и наблюдается практически полное отражение ультразвука. Отражение ультразвуковых волн наблюдается на границе мышца — надкостница — кость, на поверхности полых органов.
Бегущие и стоячие ультразвуковые волны
Если при распространении ультразвуковых волн в среде не происходит их отражения, образуются бегущие волны. В результате потерь энергии колебательные движения частиц среды постепенно затухают, и чем дальше расположены частицы от излучающей поверхности, тем меньше амплитуда их колебаний. Если же на пути распространения ультразвуковых волн имеются ткани с разными удельными акустическими сопротивлениями, то в той или иной степени происходит отражение ультразвуковых волн от пограничного раздела. Наложение падающих и отражающихся ультразвуковых волн может приводить к возникновению стоячих волн. Для возникновения стоячих волн расстояние от поверхности излучателя до отражающей поверхности должно быть кратным половине длины волны.
« Последнее редактирование: 16 Декабрь 2018, 21:41:52 от Король Альтов »
Между Ньютоном и мной Альберт Эйнштейн третий лишний.
Вселенная вечна, бесконечна и бесконечномерна.

Оффлайн Король Альтов

  • Президент ЛАН
  • Модератор
  • Местный мудрец
  • *****
  • Сообщений: 21325
  • Страна: ru
  • Рейтинг: +1027/-1607
  • Пол: Мужской
  • Рыцарь истины, свободы и справедливости.
Re: Из чего состоят волны!
« Ответ #17 : 16 Декабрь 2018, 21:50:19 »
Ультразву́к — звуковые волны, имеющие частоту выше воспринимаемых человеческим ухом, обычно, под ультразвуком понимают частоты выше 20 000 герц. Хотя о существовании ультразвука известно давно, его практическое использование достаточно молодо. В наше время ультразвук широко применяется в различных физических и технологических методах. Так, по скорости распространения звука в среде судят о её физических характеристиках. Измерения скорости на ультразвуковых частотах позволяет с весьма малыми погрешностями определять, например, адиабатические характеристики быстропротекающих процессов, значения удельной теплоёмкости газов, упругие постоянные твёрдых тел.
Источники ультразвука
Частота ультразвуковых колебаний, применяемых в промышленности и биологии, лежит в диапазоне от нескольких десятков кГц до единиц МГц. Высокочастотные колебания обычно создают с помощью пьезокерамических преобразователей, например, из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвуковых колебаний, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путём (камертоны, свистки, сирены).
В природе УЗ встречается как в качестве компонентов многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т. д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве и общения (киты, дельфины, летучие мыши, грызуны, долгопяты).
Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока — струи газа или жидкости. Вторая группа излучателей — электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твёрдого тела, которое и излучает в окружающую среду акустические волны.
Свисток Гальтона
Первый ультразвуковой свисток сделал в 1883 году англичанин Фрэнсис Гальтон.
Ультразвук здесь создаётся подобно звуку высокого тона на острие ножа, когда на него попадает поток воздуха. Роль такого острия в свистке Гальтона играет «губа» в маленькой цилиндрической резонансной полости. Газ, пропускаемый под высоким давлением через полый цилиндр, ударяется об эту «губу»; возникают колебания, частота которых (около 170 кГц) определяется размерами сопла и губы. Мощность свистка Гальтона невелика. В основном его применяют для подачи команд при дрессировке собак и кошек.
Жидкостный ультразвуковой свисток
Большинство ультразвуковых свистков можно приспособить для работы в жидкой среде. По сравнению с электрическими источниками ультразвука жидкостные ультразвуковые свистки маломощны, но иногда, например, для ультразвуковой гомогенизации, они обладают существенным преимуществом. Так как ультразвуковые волны возникают непосредственно в жидкой среде, то не происходит потери энергии ультразвуковых волн при переходе из одной среды в другую. Пожалуй, наиболее удачной является конструкция жидкостного ультразвукового свистка, изготовленного английскими учёными Коттелем и Гудменом в начале 50-х годов XX века. В нём поток жидкости под высоким давлением выходит из эллиптического сопла и направляется на стальную пластинку.
Различные модификации этой конструкции получили довольно широкое распространение для получения однородных сред. Благодаря простоте и устойчивости своей конструкции (разрушается только колеблющаяся пластинка) такие системы долговечны и недороги.
Сирена
Сирена — механический источник упругих колебаний и, в том числе, ультразвука. Их частотный диапазон может достигать 100 кГц, но известны сирены, работающие на частоте до 600 кГц. Мощность сирен доходит до десятков кВт.
Воздушные динамические сирены применяются для сигнализации и технологических целей (коагуляция мелкодисперсных аэрозолей (осаждение туманов), разрушение пены, ускорение процессов массо- и теплообмена и т. д.).
Все ротационные сирены состоят из камеры, закрытой сверху диском (статором), в котором сделано большое количество отверстий. Столько же отверстий имеется и на вращающемся внутри камеры диске — роторе. При вращении ротора положение отверстий в нём периодически совпадает с положением отверстий на статоре. В камеру непрерывно подаётся сжатый воздух, который вырывается из неё в те короткие мгновения, когда отверстия на роторе и статоре совпадают.
Частота звука в сиренах зависят от количества отверстий и их геометрической формы, и скорости вращения ротора.
« Последнее редактирование: 16 Декабрь 2018, 21:52:44 от Король Альтов »
Между Ньютоном и мной Альберт Эйнштейн третий лишний.
Вселенная вечна, бесконечна и бесконечномерна.

Оффлайн Король Альтов

  • Президент ЛАН
  • Модератор
  • Местный мудрец
  • *****
  • Сообщений: 21325
  • Страна: ru
  • Рейтинг: +1027/-1607
  • Пол: Мужской
  • Рыцарь истины, свободы и справедливости.
Re: Из чего состоят волны!
« Ответ #18 : 16 Декабрь 2018, 21:55:46 »
Ультразвук в природе
Летучие мыши, использующие при ночном ориентировании эхолокацию, испускают при этом ртом (кожановые — Vespertilionidae) или имеющим форму параболического зеркала носовым отверстием (подковоносые — Rhinolophidae) сигналы чрезвычайно высокой интенсивности. На расстоянии 1 — 5 см от головы животного давление ультразвука достигает 60 мбар, то есть соответствует в слышимой нами частотной области давлению звука, создаваемого отбойным молотком. Эхо своих сигналов летучие мыши способны воспринимать при давлении всего 0,001 мбар, то есть в 10000 раз меньше, чем у испускаемых сигналов. При этом летучие мыши могут обходить при полете препятствия даже в том случае, когда на эхолокационные сигналы накладываются ультразвуковые помехи с давлением 20 мбар. Механизм этой высокой помехоустойчивости еще неизвестен. При локализации летучими мышами предметов, например, вертикально натянутых нитей с диаметром всего 0,005 — 0,008 мм на расстоянии 20см (половина размаха крыльев), решающую роль играют сдвиг во времени и разница в интенсивности между испускаемым и отраженным сигналами. Подковоносы могут ориентироваться и с помощью только одного уха (моноаурально), что существенно облегчается крупными непрерывно движущимися ушными раковинами. Они способны компенсировать даже частотный сдвиг между испускаемыми и отражёнными сигналами, обусловленный эффектом Доплера (при приближении к предмету эхо является более высокочастотным, чем посылаемый сигнал). Понижая во время полёта эхолокационную частоту таким образом, чтобы частота отражённого ультразвука оставалась в области максимальной чувствительности их «слуховых» центров, они могут определить скорость собственного перемещения.
У ночных бабочек из семейства медведиц развился генератор ультразвуковых помех, «сбивающий со следа» летучих мышей, преследующих этих насекомых.
Эхолокацию используют для навигации и птицы — жирные козодои, или гуахаро. Населяют они горные пещеры Латинской Америки — от Панамы на северо-западе до Перу на юге и Суринама на востоке. Живя в кромешной тьме, жирные козодои, тем не менее, приспособились виртуозно летать по пещерам. Они издают негромкие щёлкающие звуки, воспринимаемые и человеческим ухом (их частота примерно 7 000 Герц). Каждый щелчок длится одну-две миллисекунды. Звук щелчка отражается от стен подземелья, разных выступов и препятствий и воспринимается чутким слухом птицы.
Ультразвуковой эхолокацией в воде пользуются китообразные.

Применение ультразвука
Диагностическое применение ультразвука в медицине (УЗИ)
Благодаря хорошему распространению ультразвука в мягких тканях человека, его относительной безвредности по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией, ультразвук широко применяется для визуализации состояния внутренних органов человека, особенно в брюшной полости и полости таза.
Терапевтическое применение ультразвука в медицине
Помимо широкого использования в диагностических целях (см. Ультразвуковое исследование), ультразвук применяется в медицине (в том числе регенеративной) в качестве инструмента лечения.
Ультразвук обладает следующими эффектами:
    противовоспалительным, рассасывающим действиями;
    анальгезирующим, спазмолитическим действием;
    кавитационным усилением проницаемости кожи.
Фонофорез — комбинированный метод лечения, при котором на ткани вместо обычного геля для ультразвуковой эмиссии (применяемого, например, при УЗИ) наносится лечебное вещество (как медикаменты, так и вещества природного происхождения). Предполагается, что ультразвук помогает лечебному веществу глубже проникать в ткани.
« Последнее редактирование: 16 Декабрь 2018, 22:01:37 от Король Альтов »
Между Ньютоном и мной Альберт Эйнштейн третий лишний.
Вселенная вечна, бесконечна и бесконечномерна.

Оффлайн Король Альтов

  • Президент ЛАН
  • Модератор
  • Местный мудрец
  • *****
  • Сообщений: 21325
  • Страна: ru
  • Рейтинг: +1027/-1607
  • Пол: Мужской
  • Рыцарь истины, свободы и справедливости.
Re: Из чего состоят волны!
« Ответ #19 : 16 Декабрь 2018, 22:07:34 »
Применение в производстве
На обычных металлорежущих станках нельзя просверлить в металлической детали узкое отверстие сложной формы, например в виде пятиконечной звезды. С помощью ультразвука это возможно, магнитострикционный вибратор может просверлить отверстие любой формы. Ультразвуковое долото вполне заменяет фрезерный станок. При этом такое долото намного проще фрезерного станка и обрабатывать им металлические детали дешевле и быстрее, чем фрезерным станком.
Ультразвуком можно даже делать винтовую нарезку в металлических деталях, в стекле, в рубине, в алмазе. Обычно резьба сначала делается в мягком металле, а потом уже деталь подвергают закалке. На ультразвуковом станке резьбу можно делать в уже закалённом металле и в самых твёрдых сплавах. То же и со штампами. Обычно штамп закаляют уже после его тщательной отделки. На ультразвуковом станке сложнейшую обработку производит абразив (наждак, корундовый порошок) в поле ультразвуковой волны. Беспрерывно колеблясь в поле ультразвука, частицы твёрдого порошка врезаются в обрабатываемый сплав и вырезают отверстие такой же формы, как и у долота.
Приготовление смесей с помощью ультразвука
Широко применяется ультразвук для приготовления однородных смесей (гомогенизации). Получаемые эмульсии играют большую роль в современной промышленности, это: лаки, краски, фармацевтические изделия, косметика.
В 1927 году американские ученые Лимус и Вуд обнаружили, что если две несмешивающиеся жидкости (например, масло и воду) слить в одну мензурку и подвергнуть облучению ультразвуком, то в мензурке образуется эмульсия, то есть мелкая взвесь масла в воде. Данный процесс происходит из-за явления кавитации, начинающегося при превышении определённых порогов интенсивности излучения (вода — 1 Вт/см2, масло — 4 Вт/см2). При изменении давления, температуры и времени воздействия кавитация может начинаться и при более низкой мощности.
Применение ультразвука в биологии
Способность ультразвука разрывать оболочки клеток нашла применение в биологических исследованиях, например, при необходимости отделить клетку от ферментов. Ультразвук используется также для разрушения таких внутриклеточных структур, как митохондрии и хлоропласты с целью изучения взаимосвязи между их структурой и функциями. Другое применение ультразвука в биологии связано с его способностью вызывать мутации. Исследования, проведённые в Оксфорде, показали, что ультразвук даже малой интенсивности может повредить молекулу ДНК.[источник не указан 2831 день] Искусственное целенаправленное создание мутаций играет большую роль в селекции растений. Главное преимущество ультразвука перед другими мутагенами (рентгеновские лучи, ультрафиолетовые лучи) заключается в том, что с ним чрезвычайно легко работать.
Применение ультразвука для механической очистки основано на возникновении под его воздействием в жидкости различных нелинейных эффектов. К ним относится кавитация, акустические течения, звуковое давление. Основную роль играет кавитация. Её пузырьки, возникая и схлопываясь вблизи загрязнений, разрушают их. Этот эффект известен как кавитационная эрозия. Используемый для этих целей ультразвук имеет низкую частоту и повышенную мощность.
В лабораторных и производственных условиях для мытья мелких деталей и посуды применяются ультразвуковые ванны заполоненные растворителем (вода, спирт и т. п.). Иногда с их помощью от частиц земли моют даже корнеплоды (картофель, морковь, свекла и др.).
В быту, для стирки текстильных изделий, используют специальные, излучающие ультразвук устройства, помещаемые в отдельную ёмкость.
Применение ультразвука в эхолокации
В рыбной промышленности применяют ультразвуковую эхолокацию для обнаружения косяков рыб. Ультразвуковые волны отражаются от косяков рыб и приходят в приёмник ультразвука раньше, чем ультразвуковая волна, отразившаяся от дна.
В автомобилях применяются ультразвуковые парктроники.
« Последнее редактирование: 16 Декабрь 2018, 22:13:33 от Король Альтов »
Между Ньютоном и мной Альберт Эйнштейн третий лишний.
Вселенная вечна, бесконечна и бесконечномерна.

Большой Форум

Re: Из чего состоят волны!
« Ответ #19 : 16 Декабрь 2018, 22:07:34 »
Loading...