Кваркглюонная плазма
Диаграмма фазового состояния вещества при различных температурах и плотностях.

Рис. 5. Диаграмма фазового состояния вещества при различных температурах Т и плотностях ro/ro0 . Плотность дана относительно средней плотности ядра.
Квантовохромодинамические расчеты показывают, что при определенных температурах и плотностях ядерного вещества оно может перейти в новое состояние - кваркглюонную плазму. Рис. 5 иллюстрирует ожидание. Здесь по оси ординат отложена температура, а по оси абсцисс - плотность, нормированная на плотность ядер, так что точка на оси абсцисс при ro/ro0 = 1 обозначает место, где находятся обычные ядра. Жирная линия - область перехода ядерного вещества в кваркглюонную плазму. Нетрудно видеть, что свойства флуктонов - температура, если за ее меру считать наклоны спектров кумулятивных частиц, и плотность, если считать его размеры равными размеру нуклонов, - таковы, что флуктон может быть капелькой кваркглюонной плазмы. Кваркглюонная плазма (КГП) - такое состояние вещества, где нет индивидуальных нуклонов, нет отдельных многокварковых мешков. Если хотите, это один большой кварковый мешок с возбужденным кварковым морем. Не исключено, что КГП в природе может быть в очень плотных астрономических объектах и, вероятно, реализовалась в момент первичного взрыва.
Сегодня поиски КГП - заманчивая задача многих экспериментаторов в мире. Строятся большие установки, создаются ускорители тяжелых ионов на большие начальные энергии. Идея состоит в том, чтобы при столкновении тяжелых ионов, то есть многих нуклонов, образовалось в области столкновения как можно больше pi-мезонов, которые и могут перейти при соответствующих (см. рис. 5) условиях в КГП. Мы не знаем, случится ли такое. Пока при освоенных энергиях убедительного проявления КГП при столкновениях ионов не обнаружилось. Может быть, изучение свойств флуктонов, подаренных природой плотных образований, позволит изучать КГП в краткие моменты существования флуктуаций.
Тут, правда, есть замечания. Кварковые плазмы бывают разные. Вообще говоря, КГП во флуктоне, если она там образуется, - это барионнонасыщенная плазма, а при столкновении ионов небарионнонасыщенная. Флуктон, по определению, не равновесный объект. И неясно пока, можно ли и как применять к нему понятие из равновесной термодинамики, например такое, как температура. В то же время, может быть,
флуктуации кварковой материи в ядрах - простейший объект неравновесной термодинамики. Долгое время считалось, что ядро - настолько сложный объект, что его надо изучать, изучив нуклон-нуклонное взаимодействие и сводя его к последнему. Мы уже видели, что нуклон сложен не менее ядра, но он еще не вполне "среда". Может, надо идти от изучения кварков в среде, создавая квантовую хромодинамику сред, подобно тому как есть электродинамика сред с такими понятиями, как показатель преломления среды относительно вакуума, электродинамические потери энергии частицами при прохождении через среду, дисперсия энергетических потерь и т.д. В хромодинамике сред возникают вопросы: чему равен радиус конфаймента в ядерной материи, где присутствуют другие кварки и глюоны, как могут двигаться цветные кварки в ядерной среде, как и где - внутри или на границе ядра - кварки переходят в адроны (сильно взаимодействующие частицы), как говорят, адронизуются?
Заключение
Видно, что к концу статьи нарастает число предположений, сомнений и вопросов без ответа. Это естественно, мы приблизились к границе исследований в заданном направлении. Сами добываемые знания лишь мазок на фундаментальной картине строения материи. Незавершенный мазок. Эксперименты продолжаются.
